




已阅读5页,还剩50页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高初中数学的衔接 平度市教学研究室组织编写20097 第一讲 如何学好高中数学 你们经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,你们会普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。渐渐地会认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。下面就对造成这种现象的一些原因加以分析、总结。希望同学们认真吸取前人的经验教训,搞好自己的数学学习。一 高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。2 思维方法向理性层次跃迁。高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一朝一夕的。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。3 知识内容的整体数量剧增。高中数学在知识内容的“量”上急剧增加了。例如:高一必修一第一、二章就有基本概念52个,数学符号28个;必修二立体几何有基本概念37个,基本公理、定理和推论21个;两者合在一起仅基本概念就达89个之多,并集中在高一第一学期学习,形成了概念密集的学习阶段。加之高中一年级第一学期只有七十多课时,辅助练习、消化的课时相应地减少了。使得数学课时吃紧,因而教学进度一般较快,从而增加了教与学的难度。这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。这就要求:第一,要做好课后的复习工作,记牢大量的知识。第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中。第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”。如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法。第四,要多做总结、归类,建立主体的知识结构网络。二 不良的学习状态1 学习习惯因依赖心理而滞后。初中生在学习上的依赖心理是很明显的。第一,为提高分数,初中数学教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了。许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。2 思想松懈。有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,有的还是重点中学里的重点班,因而认为读高中也不过如此。高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的同学是大错特错的。有多少同学就是因为高一、二不努力学习,临近高考了,发现自己缺漏了很多知识再弥补后悔晚矣。3 学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆;课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。4 不重视基础。一些“自我感觉良好”的同学,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。5 进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法、实根分布与参变量的讨论、,三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。三 科学地进行学习高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。1 培养良好的学习习惯。反复使用的方法将变成人们的习惯。什么是良好的学习习惯?良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。(1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。(2)课前自学是上好新课、取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。(3)上课是理解和掌握基础知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。(4)及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对意志毅力的考验,通过运用使对所学知识由“会”到“熟”。(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的知识拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,使所学到的知识由“熟”到“活”。(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。2 循序渐进,防止急躁。由于同学们年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣;有的同学想靠几天“冲刺”一蹴而就;有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。同学们要知道,学习是一个长期地巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。为什么高中要学三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。3 注意研究学科特点,寻找最佳学习方法。数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。 第二讲 初中数学与高中数学衔接紧密的知识点 1 绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即两个负数比较大小,绝对值大的反而小两个绝对值不等式:;或2 乘法公式:平方差公式:立方差公式:立方和公式:完全平方公式:,完全立方公式:3 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法,运用公式法,分组分解法,十字相乘法。4 一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。关于方程解的讨论当时,方程有唯一解;当,时,方程无解 当,时,方程有无数解;此时任一实数都是方程的解。5 二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。(4)解二元一次方程组的方法:代入消元法,加减消元法。6 不等式与不等式组(1)不等式:用符不等号(、)连接的式子叫不等式。不等式的两边都加上或减去同一个整式,不等号的方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。(2)不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。(4)一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。7 一元二次方程:方程有两个实数根 方程有两根同号 方程有两根异号 韦达定理及应用:, 8 函数(1)变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。(2)一次函数:若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。当=0时,称是的正比例函数。(3)一次函数的图象及性质把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数的图象是经过原点的一条直线。在一次函数中,当, ,则经2、3、4象限;当,时,则经1、2、4象限;当,时,则经1、3、4象限;当, 时,则经1、2、3象限。当时,的值随值的增大而增大,当时,的值随值的增大而减少。(4)二次函数:一般式:(),对称轴是顶点是;顶点式:(),对称轴是顶点是;交点式:(),其中(),()是抛物线与x轴的交点(5)二次函数的性质 函数的图象关于直线对称。时,在对称轴 ()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值时,在对称轴 ()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值9 图形的对称(1)轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。(2)中心对称图形:在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。10 平面直角坐标系(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做轴或横轴,铅直的数轴叫做轴或纵轴,轴与轴统称坐标轴,他们的公共原点称为直角坐标系的原点。(2)平面直角坐标系内的对称点:设,是直角坐标系内的两点,若和关于轴对称,则有。若和关于轴对称,则有。若和关于原点对称,则有。若和关于直线对称,则有。若和关于直线对称,则有或。11 统计与概率:(1)科学记数法:一个大于10的数可以表示成的形式,其中大于等于1小于10,是正整数。(2)扇形统计图:用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。(3)各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。(5)平均数:对于个数,我们把()叫做这个个数的算术平均数,记为。(6)加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。(7)中位数与众数:个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最大的那个数据叫做这个组数据的众数。优劣比较:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。(8)调查:为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。(9)频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。(10)数据的波动:极差是指一组数据中最大数据与最小数据的差。方差是各个数据与平均数之差的平方和的平均数。标准差就是方差的算术平方根。一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定。(11)事件的可能性:有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。一般来说,不确定事件发生的可能性是有大小的。(12)概率:人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。游戏对双方公平是指双方获胜的可能性相同。必然事件发生的概率为1,记作(必然事件);不可能事件发生的概率为,记作(不可能事件);如果A为不确定事件,那么 第三讲 衔接知识点的专题强化训练 专题一 数与式的运算【要点回顾】1绝对值1绝对值的代数意义: 即 2绝对值的几何意义: 的距离 3两个数的差的绝对值的几何意义:表示 的距离4两个绝对值不等式:;2乘法公式我们在初中已经学习过了下列一些乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 我们还可以通过证明得到下列一些乘法公式:公式1公式2(立方和公式)公式3 (立方差公式)说明:上述公式均称为“乘法公式”3根式1式子叫做二次根式,其性质如下:(1) ; (2) ;(3) ; (4) 2平方根与算术平方根的概念: 叫做的平方根,记作,其中叫做的算术平方根3立方根的概念: 叫做的立方根,记为4分式1分式的意义 形如的式子,若中含有字母,且,则称为分式当时,分式具有下列性质: (1) ; (2) 2繁分式 当分式的分子、分母中至少有一个是分式时,就叫做繁分式,如,说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质3分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程【例题选讲】例1化简下列各式,其中例2. 解下列不等式:(1) (2)4例3. 计算: (1) (2)(3) (4)例4. 已知,求的值例5. 已知,求的值例6.已知求的值.例7. 计算(没有特殊说明,本节中出现的字母均为正数):(1) (2) (3) (4) 例8. 设,求的值例9. 化简:(1) (2)【巩固练习】1用适当的代数式填空_ _ _ _2用适当的代数式填空( ) ( )( ) ( )3用适当的代数式填空,使之构成立方和(差)公式 ( )_ ( )_( )_ ( ) _练习:因式分解_ _ _4. 等式成立的条件是 ( )A B C D5. 化简二次根式的结果是 6. 已知且则对的值为_.7. 不等式的解集是 8.(1) 若,则_. 若,则_. 若且, 则_;若,则_. 若与互为相反数,则_.(2)下列说法中正确的是( )A. 若则; B. 若则C. 若则; D. 若,则.(3)已知,则应满足_.(4)已知为负数,则的取值范围 .9.解不等式: 10.设,求代数式的值11.若,求的值.12.若求分式的值.13已知求的值.14.已知实数满足,那么求的值.15.已知当时,分式无意义;时,此分式的值为,求的值. 16.设,求的值17.已知,求的值.18.计算19化简或计算:(1) (2) (3) (4) (5) (6)20.当,求的值 专题二 因式分解【要点回顾】 因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形在分式运算、解方程及各种恒等变形中起着重要的作用是一种重要的基本技能因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等1公式法常用的乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 45(立方和公式)6 (立方差公式)由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,运用上述公式可以进行因式分解2分组分解法 从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式而对于四项以上的多项式,如既没有公式可用,也没有公因式可以提取因此,可以先将多项式分组处理这种利用分组来因式分解的方法叫做分组分解法分组分解法的关键在于如何分组常见题型:(1)分组后能提取公因式 (2)分组后能直接运用公式3十字相乘法(1)型的因式分解 这类式子在许多问题中经常出现,其特点是:二次项系数是;常数项是两个数之积; 一次项系数是常数项的两个因数之和,运用这个公式,可以把某些二次项系数为1的二次三项式分解因式(2)一般二次三项式型的因式分解由我们发现,二次项系数分解成,常数项分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解4其它因式分解的方法其他常用的因式分解的方法:(1)配方法 (2)拆、添项法【例题选讲】例1. (公式法)分解因式: 利用一元二次方程的的求根公式,分解二次三项式。用公式法将下列二次三项式分解因式(1)(2)练习:用公式法将下列二次三项式分解因式(1)(2)例2. (分组分解法)分解因式:(1) (2)(3)例3.(十字相乘法)分解因式: (1); (2);练习:用十字相乘法将下列二次三项式分解因式(1) (2) (3) (4) (5)例4.用十字相乘法将下列二次三项式进行分解因式:(1) (2)【能力提高】用十字相乘法将下列二次三项式进行分解因式:(1) (2)(3)例5. (拆项法)分解因式【巩固练习】1多项式分解因式时应提取的公因式为( )A B C D2下列各题中分解因式错误的是( )A BC D3下列变形中是因式分解的是( )A BC D4下列各式中,能用平方差公式分解因式的是( )A BC D5用分组分解法分解多项式时,正确的分组方法是( )A BC D6把下列各式分解因式:(1) (2)(3) (4) (5) (6) (7) (8)(9) (10)7已知,求代数式的值8现给出三个多项式,请你选择其中两个进行加法运算,并把结果因式分解.9已知,求证:10. 把下列各式分解因式:(1)(2) 专题三 一元二次方程根与系数的关系【要点回顾】1一元二次方程的根的判断式一元二次方程,用配方法将其变形为: 由于可以用的取值情况来判定一元二次方程的根的情况因此,把叫做一元二次方程的根的判别式,表示为:对于一元二次方程,有1当 时,方程有两个不相等的实数根: ;2当 时,方程有两个相等的实数根: ;3当 时,方程没有实数根2一元二次方程的根与系数的关系定理:如果一元二次方程的两个根为,那么: 说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”上述定理成立的前提是 特别地,对于二次项系数为的一元二次方程,若,是其两根,由韦达定理可知 ,即 ,所以,方程可化为,由于,是一元二次方程的两根,所以,、也是一元二次方程因此有 以两个数、为根的一元二次方程(二次项系数为)是【例题选讲】例1. 已知关于的一元二次方程,根据下列条件,分别求出的范围:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根(3)方程有实数根; (4)方程无实数根例2. 已知实数、满足,试求、的值例3. 若是方程的两个根,试求下列各式的值:(1) ; (2) ; (3) ;(4) 例4. 已知是一元二次方程的两个实数根(1) 是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由(2) 求使的值为整数的实数的整数值【巩固练习】1.选择题:(1)若是方程的两个根,则的值为( )ABCD(2)如果是两个不相等实数,且满足, 那么等于( ) A B C D(3)关于的方程中,如果,那么根的情况是( ) A有两个相等的实数根 B有两个不相等的实数根 C没有实数根 D不能确定 (4)设是方程的两根,则的值是( ) A B C D (5)下列方程中,有两个相等的实数根的是( ) A B C D (6)以方程的两个根的和与积为两根的一元二次方程是( ) A B C D2设是方程的两实根,是关于的方程的两实根,则 , 3.方程中,则方程根的个数为 4已知实数满足,则 , , 5已知关于的方程的两个实数根的平方和等于,求证:关于的方程有实数根6.已知方程的两根之比,求的值. 7已知方程,求做一个一元二次方程使它的两根分别为已知方程各根的倒数。8设是方程的两根(1)求的值;(2)求的值;(3)若求的值.9若是关于的方程的两个实数根,且都大于(1)求实数的取值范围;(2) 若,求的值10若关于的方程有两个不相等的实根,求分别满足下列条件的的取值范围。(1)方程两根都大于;(2)方程一根大于,一根小于11.已知方程有一个根为,求另一个根和的值12.若方程的两根为,用韦达定理计算(1);(2);(3);(4);(5). 专题四 平面直角坐标系、一次函数、反比例函数【要点回顾】1平面直角坐标系1 组成平面直角坐标系。 叫做轴或横轴, 叫做轴或纵轴,轴与轴统称坐标轴,他们的公共原点称为直角坐标系的原点。2 平面直角坐标系内点的对称点:对称点或对称直线方程对称点的坐标轴 轴 原点 点 直线 直线 直线 直线 2函数图象 1一次函数: 称是的一次函数,记为:(、是常数,)特别的,当=0时,称是的正比例函数。2 正比例函数的图象与性质:函数(是常数,)的图象是 的一条直线,当 时,图象过原点及第一、第三象限,随的增大而 ;当 时,图象过原点及第二、第四象限,随的增大而 3 一次函数的图象与性质:函数(、是常数,)的图象是过点且与直线平行的一条直线.设(),则当 时,随的增大而 ;当 时, 随的增大而 4反比例函数的图象与性质:函数()是双曲线,当 时,图象在第一、第三象限,在每个象限中,随的增大而 ;当 时,图象在第二、第四象限.,在每个象限中,随的增大而 双曲线是轴对称图形,对称轴是直线与;又是中心对称图形,对称中心是原点【例题选讲】例1. 已知、,根据下列条件,求出、点坐标(1) 、关于轴对称;(2) 、关于轴对称;(3) 、关于原点对称例2.已知一次函数的图象过第一、二、三象限且与、轴分别交于、两点,为原点,若的面积为,求此一次函数的表达式。 例3.如图,反比例函数的图象与一次函数的图象交于,两点(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当取何值时,反比例函数的值大于一次函数的值【巩固练习】1函数与在同一坐标系内的图象可以是( ) 2如图,平行四边形中,在坐标原点,在第一象限角平分线上,又知,求点的坐标 3已知一次函数,试确定的取值范围,分别使得(1)随的增大而增大(2)图象与轴的交点在轴下方(3)函数的图象经过一、二、四象限4如图,已知直线与双曲线交于两点,且点的横坐标为(1)求的值;(2)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积 为,求点的坐标 专题五 二次函数【要点回顾】1 二次函数()的图像和性质问题1 函数与的图象之间存在怎样的关系?问题2 函数与的图象之间存在怎样的关系?由上面的结论,我们可以得到研究二次函数()的图象的方法:由于, 所以,()的图象可以看作是将函数的图象作左右平移、上下平移得到的,二次函数()具有下列性质:1当时,函数图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,随着的增大而 ;当 时,随着的的增大而 ;当 时,函数取最小值 2当时,函数图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,随着的增大而 ;当 时,随着的增大而 ;当 时,函数取最大值 上述二次函数的性质可以分别通过上图直观地表示出来因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题2二次函数的三种表示方式1二次函数的三种表示方式:(1)一般式: ;(2)顶点式: ;(3)交点式: 说明:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则二次函数的关系式可设如下三种形式:给出三点坐标可利用一般式来求;给出两点,且其中一点为顶点时可利用顶点式来求给出三点,其中两点为与轴的两个交点.时可利用交点式来求3分段函数一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数【例题选讲】例1 求二次函数图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当取何值时,随的增大而增大(或减小)?并画出该函数的图象例2 某种产品的成本是元/件,试销阶段每件产品的售价(元)与产品的日销售量(件)之间关系如下表所示:(元)(件)若日销售量是销售价的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?例3 已知函数,其中,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量的值 例4 根据下列条件,分别求出对应的二次函数的关系式(1)已知某二次函数的最大值为,图像的顶点在直线上,并且图象经过点;(2)已知二次函数的图象过点,且顶点到轴的距离等于;(3)已知二次函数的图象过点, 例5 在国内投递外埠平信,每封信不超过g付邮资分,超过g不超过g付邮资分,超过g不超过g付邮资分,依此类推,每封g()的信应付多少邮资(单位:分)?写出函数表达式,作出函数图象【巩固练习】1选择题:(1)把函数的图象的顶点坐标是 ( )A B C D(2)函数的最值情况是 ( )A有最大值 B有最小值 C有最大值 D有最大值(3)函数中,当时,则y值的取值范围是 ( )A B C D 2填空:(1)已知某二次函数的图象与轴交于,且过点,则该二次函数的表达式为 (2)已知某二次函数的图象过点,则该函数的表达式为 (3)已知,当 时,它的图象是抛物线且开口向下.3二次函数的图像如图所示,试判断下列字母或代数式的符号(1);(2);(3);(4);(5);(6);(7). 4.根据下列条件,分别求出对应的二次函数的关系式(1)已知二次函数的图象经过点,;(2)已知抛物线的顶点为,且与轴交于点;(3)已知抛物线与轴交于点,且与轴交于点;(4)已知抛物线的顶点为,且与轴两交点间的距离为5.已知抛物线,为何值时,顶点在第四象限? 6二次函数,当时,函数有最大值,且图像经过点;(1)求二次函数的解析式;(2)为何时,随着的增大而增大?为何时,随着的增大而减小?(3)为何时,7已知二次函数(1)写出图像的开口方向、对称轴、顶点坐标;(2)取何值时,图像与轴有两个交点;(3)取何值时,顶点在轴上方?(4)如果图像与轴的一个交点为,求的值及另一个交点坐标。8为何值时?恒成立?9已知二次函数(1)如果,求的值;(2)为何值时,函数的最小值为?10已知函数; (1)证明:无论为何值,函数图像与轴总有两个交点;(2)当为何值时,函数图像与轴的两个交点间距离等于?11如图,某农民要用m的竹篱笆在墙边围出一块一面为墙、另三面为篱笆的矩形地供他圈养小鸡已知墙的长度为m,问怎样围才能使得该矩形面积最大?12. 已知抛物线(1)证明:无论为何值,抛物线与轴总有两个交点;(2)为何值时,抛物线与轴两个交点之间的距离为?(3)为何值时,抛物线与轴两个交点之间的距离最小?13.求在-上的最值。14如图所示,在边长为的正方形的边上有一个动点,从点出发沿折线移动一周后,回到点设点移动的路程为,的面积为(1)求函数的解析式;(2)画出函数的图像; (3)求函数的取值范围 专题六 二次函数的最值问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 以设计思维为导向的教育技术培训模式探讨
- 物业保安意识培训
- 珠海艺术职业学院《能源供应与规模方案》2023-2024学年第一学期期末试卷
- 教育领域的数据分析挖掘学习行为的潜在价值
- 赤峰学院《植物生物技术农艺与种业》2023-2024学年第一学期期末试卷
- 幸福社区研学活动方案
- 幼儿园招生亲自活动方案
- 幼儿园音乐模仿活动方案
- 店铺礼金活动方案
- 幼儿园管道活动方案
- 孤独症相关培训课件
- 2025至2030中国数据中心液冷行业发展趋势分析与未来投资战略咨询研究报告
- Unit 2 Home Sweet Home 第5课时(Section B 2a-3c) 2025-2026学年人教版英语八年级下册
- 2025年河北省中考数学试卷真题
- 2025年山东省潍坊市寿光市英语七下期末学业水平测试试题含答案
- 高水平研究型大学建设中教育、科技与人才的协同发展研究
- 山西省2025年普通高中学业水平合格性考试适应性测试化学试卷(含答案)
- 房屋市政工程生产安全重大事故隐患台账
- 江西省九江市外国语学校2025届英语八下期末学业质量监测试题含答案
- 2025摄影服务合同模板
- 2025年全国统一高考语文试卷(全国一卷)含答案
评论
0/150
提交评论