湖南省浏阳一中高二数学下学期期末考试试题 理.doc_第1页
湖南省浏阳一中高二数学下学期期末考试试题 理.doc_第2页
湖南省浏阳一中高二数学下学期期末考试试题 理.doc_第3页
湖南省浏阳一中高二数学下学期期末考试试题 理.doc_第4页
湖南省浏阳一中高二数学下学期期末考试试题 理.doc_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浏阳一中2015年上学期高二期末考试试卷 理 科 数 学 考试时间:120分钟 总分:150分姓名:_班级:_考号:_一、选择题(本大题共12小题,每小题5分,共60分)1复数的共轭复数是( )a12i b1+2i c1+2i d12i2设集合, 集合, 则 ( )a b c d3设,则“”是“”的( )a充分而不必要条件 b必要而不充分条件 c充要条件 d既不充分也不必要条件4函数的定义域是( )a b c d5已知为等差数列,若,则的值为( )a b c d6某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生、本科生与研究生这三类学生中分别抽取a55人,80人,45人 b40人,100人,40人c60人,60人,60人 d50人,100人,30人7若变量满足约束条件,则的最大值和最小值分别为 ( )a b c d8函数的图象是( )9 已知abc内角a,b,c的对边分别是a,b,c,若cos b,b2,sin c2sin a,则abc的面积为()a. b. c. d.10学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。现从该小组中选出3位同学分别到三地进行社会调查,若选出的同学中男女均有,则不同安排方法有( )a70种 b140种 c840种 d420种11若直线,始终平分圆的周长,则的最小值为 ( )a、1 b c d612已知函数在区间(0,1)内任取两个实数p,q,且pq,不等式恒成立,则实数的取值范围为( )a b c d二、填空题(本大题共4小题,每小题5分,共20分)13命题“都有”的否定: ;14 .15平面上三点,向量=3,=2,设p是线段ab 垂直平分线上一点,则的值为_.16下列说法:函数的零点只有1个且属于区间;若关于的不等式恒成立,则;函数的图像与函数的图像有3个不同的交点;函数的最小值是1.正确的有 .(请将你认为正确说法的序号都写上)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17(本题满分12分) 已知等差数列满足:.()求数列的通项公式;()若,求数列的前项和.18(本题满分12分)如图,已知四棱锥的底面是正方形,侧棱底面,是的中点(1)证明平面;(2)求二面角的余弦值19(本题满分12分)某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(mn),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立(1)求m,n;(2)设x为该同学取得优秀成绩的课程门数,求ex20 (本题满分12分)设a是圆上的任意一点,是过点a与轴垂直的直线,d是直线与轴的交点,点m在直线上,且满足当点a在圆上运动时,记点m的轨迹为曲线(1)求曲线的标准方程;(2)设曲线的左右焦点分别为、,经过的直线与曲线交于p、q两点,若,求直线的方程21(本题满分12分)已知函数(为实数)()当时,求函数的图象在点处的切线方程;()设函数(其中为常数),若函数在区间上不存在极值,且存在满足,求的取值范围;()已知,求证:请考生从第22、23、24三题中任选1题作答,若多做,按所做的第一个题目计分22(本小题满分10分)选修4-1:几何证明选讲如图,的直径的延长线与弦的延长线相交于点,为上一点,aeac ,交于点,且,acpdoef b()求的长度()若圆f与圆内切,直线pt与圆f切于点t,求线段pt的长度23(本小题满分10分)选修44:坐标系与参数方程已知直线的方程为,圆的方程为(1) 把直线和圆的方程化为普通方程;(2) 求圆上的点到直线距离的最大值24(本小题满分10分,不等式选讲)已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.参考答案1b【解析】试题分析:复数,共轭复数为考点:复数运算与共轭复数2a【解析】试题分析:,则考点:1一元二次不等式;2指数不等式;3集合的运算3d【解析】试题分析:因为成立,的符号是不确定的,所以不能推出成立,反之也不行,所以是既不充分也不必要条件,故选d考点:充分必要条件的判断4d【解析】试题分析: 要使函数有意义应满足解得考点:函数的定义域5a【解析】试题分析:由等差数列性质可知考点:等差数列性质6d【解析】试题分析:专科生:本科生:研究生,抽取的专科生人数人,抽取的本科生人数人,抽取的研究生人数人,故答案为d考点:分层抽样的应用7b【解析】试题解析:依题可画出其约束条件的可行域如下图所示,11xyoa(1,0)b(2,0)l又目标函数:即, 当其表示直线经过点时,有最小值为2;当经过点时,有最大值为4,故选b考点:二元一次不等式线性规划8b【解析】试题分析:由,得是偶函数,图象关于轴对称,因此排除a,c,当,因此,故答案为b考点:函数图象的判断9b【解析】由正弦定理,得c2a由余弦定理b2a2c22accos b,得4a2c22ac由得:a1,c2,又sin b.所以sabcacsin b1211d【解析】试题分析:因为直线,始终平分圆的周长,所以直线过圆的圆心则,即;则令,则在上单调递减,故的最小值为6考点:直线与圆的位置关系、基本不等式【改编简介】本题改编自2015届山东省乐陵市一中高三上学期期中考试文试卷第8题,改编了条件(给定的关系),这是一道易错题,容易利用基本不等式求最小值10d【解析】试题分析:采用反面来做,首先从9名同学中任选3名参加社会调查有种,3名同学全是男生或全是女生的有种,故选出的同学中男女均有,则不同安排方法有种不同选法考点:排列与组合12a【解析】试题分析:由已知得,且,等价于函数在区间上任意两点连线的割线斜率大于1,等价于函数在区间的切线斜率大于1恒成立,即恒成立,变形为,因为,故考点:1、导数的几何意义;2、二次函数的最大值.13使得【解析】试题分析:特称命题的否定式全称命题,否定时将结论加以否定,的否定为,所以命题的否定为使得考点:全称命题与特称命题14.【解析】试题分析:.考点:定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.15【解析】试题解析:取为中点,考点:向量的数量积运算16【解析】试题分析:函数在上是增函数,且, .所以正确.当时原不等式变形为,恒成立;当时,要使关于的不等式恒成立,则,综上可得关于的不等式恒成立时.故不正确.由函数图像可知函数的图像与函数的图像只有一个交点,故不正确.,时, ,所以此函数在上单调递增.所以.故正确.考点:函数的性质;17解析:()设的首项为,公差为,则由得,解得所以;()由得. .18解法一:(1)连结,设与交于点,连结.底面abcd是正方形,为的中点,又为的中点, 平面,平面,平面.解法二:(1)以为坐标原点,分别以所在直线为轴建立空间直角坐标系,设,则.,设是平面的一个法向量,则由 ,, ,(2) 由(1)知是平面bde的一个法向量,又是平面的一个法向量.设二面角的平面角为,由题意可知.19. 试题解析:(1)设该同学语、数、外取得优秀成绩分别为事件a、b、c,p(a)=, p(b)=m ,p(c)=n , 由已知条件可知:p(abc)=,p()=,又mn,则m= ,n=6分 (2)x=0,1,2,3,p(x=0)=,p(x=1)=p(a+b+c)=,p(x=2)=p(ab+ac+bc)=,p(x=3)=,x的分布列为x0123pex=0+1+2+3= 12分考点:随机变量的概率、分布列、期望20(1);(2)5.【解析】试题分析:本题主要考查椭圆的标准方程、椭圆的几何性质、直线与椭圆相交问题、韦达定理、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,设出点斜式的直线的方程,再结合椭圆的离心率解出a,b,c,从而写出椭圆的方程;第二问,分直线的斜率是否存在两种情况讨论,当斜率不存在时,可数形结合得到结论,当斜率存在时需直线与椭圆方程联立,消参,利用韦达定理两点间距离公式,代入到面积公式中,找出k与m的关系,再计算,利用基本不等式求最值.试题解析:(1)因为直线的倾斜角为,所以,直线的方程为,由已知得,所以.又,所以,,椭圆的方程 . 4分(2)当直线的斜率不存在时,两点关于轴对称,则,由在椭圆上,则,而,则知=. 5分当直线的斜率存在时,设直线为,代入可得,即,由题意,即. 7分,,化为,即. 则,满足, 9分由前知,. 11分,当且仅当,即时等号成立,故. 综上可知的最大值为. 12分考点:椭圆的标准方程、椭圆的几何性质、直线与椭圆相交问题、韦达定理、基本不等式.21(1);(2) 或;(3)证明略.【解析】试题分析:(1)求导,利用导数的几何意义进行求解;(2)求导,根据函数在区间上不存在极值,得到的取值范围,再利用二次函数的对称轴与开口方向求得最值,得到关于的不等式,再进行求解;(3)先判定函数的单调性,再合理进行赋值放缩进行证明.试题解析:()当时,则,函数的图象在点的切线方程为:,即 3分(),由由于函数在区间上不存在极值,所以或 4分由于存在满足,所以 5分对于函数,对称轴当或,即或时,由,结合或可得:或当,即时,由,结合可知:不存在; 当,即时,;由,结合可知: 综上可知: 或 8分()当时,当时,单调递增;当时,单调递减,在处取得最大值 即, 10分令,则,即,故 12分考点:1.导数的几何意义;2.函数的单调性;3.函数的极值;4.放缩法.22() ()【解析】试题分析:第一问根据圆的性质,得出相应的相等角,从而得出相似三角形,从而得出线段成比例,进而求得结果,第二问根据割线定理求得结果acpdoef b试题解析:()连结,由同弧对应的圆周角与圆心角之间的关系结合题中条件弧长等于弧长可得,又,从而,故, 4分由割线定理知,故 6分()若圆f与圆内切,设圆的半径为,因为即所以是圆的直径,且过点圆的切线为则,即 10分考点:圆的性质,相似三角形,各线定理23(1);(2)2【解析】试题分析:(1)先消去参数,得到圆的普通方程,再利用化成极坐标方程;(2)联立两曲线的极坐标方程,求出曲线的交点,再求两点间的距离解题思路:曲线的普通方程、参数方程、极

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论