外文翻译---一种新型使用永磁同步发电机和Z源逆变器的变速风力发电系统_第1页
外文翻译---一种新型使用永磁同步发电机和Z源逆变器的变速风力发电系统_第2页
外文翻译---一种新型使用永磁同步发电机和Z源逆变器的变速风力发电系统_第3页
外文翻译---一种新型使用永磁同步发电机和Z源逆变器的变速风力发电系统_第4页
外文翻译---一种新型使用永磁同步发电机和Z源逆变器的变速风力发电系统_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕 业 设 计 外 文 文 献 译 文 及 原 文 学 生: 曹 文 天 学 号: 200806010211 院 (系): 电气与信息工程学院 专 业: 电气工程及其自动化 指导教师: 陈 景 文 2012年 6月 8日1 一种新型使用永磁同步发电机和 Z源逆变器的变速风力发电系统 1 介绍 风机发出的电作为能源使用在世界上已经有了很显著地增长。随着风能变换系统( WECSs)应 用的增加,各种各样适合它们的技术正在发展。正因为有着众多的优势,永磁同步发电机( PMSG)发电系统在风力发电技术发展中已成为一种主流趋势。从风能中获得最大能量以及在电网中得到高品质的电能是风能变换系统的两个主要目标。对于这两个目标,交 -直 -交变换器是风能变换系统最好的拓扑结构之一。图 1 展示了一种传统的永磁同步发电机的交 -直 -交拓扑结构。这个结构包括二极管整流电路,升压直流变换电路和三相逆变电路。在这种拓扑结构中,升压变换电路被控制用来跟踪最大功率点( MPPT),逆变电路用来给电网传递高品质的电能。 图 1 传统的基于永磁同步电机并带直流升压斩波的风能变换系统 Z源逆变器目前被认为替代现有的逆变拓扑结构有着固有的优势,例如电压上升。这个逆变电路在相同的逆变相角(直通状态)中,伴随着两个转换开关的导通可以促进电压的上升能力。 本篇论文提出了一种新型的有着 Z源逆变电路并且基于永磁同步电机的风能变换系统。这种系统的拓扑结构如图 2所示。这种拓扑结构的升压转换电路没有任何的改变。而且,系统的可靠性得到了很大的提升,因为短路通过逆变器中的任何相角都是被允许的。由于没有相角死区时间,逆变输出功率的失真很小。 图 2 有着 Z源逆变电路并且基于永磁同步电机的风能变换系统 2 这篇论文的第二部分介绍了 Z源逆变电路并描述从整流电路到 Z源逆变电路的操作过程。然后,介绍了功率传递和最大功率点跟踪的系统。 2 Z源逆变电路 图 3展示了 Z源逆变电路。在它的直流侧有阻抗网络,连接着电压源与逆变器。阻抗网络由两个电感和两个电容组成。传统的电压源逆变电路有六个有效矢量和两个零矢量。然而, Z 源逆变电路仅有一个零矢量(状态)。对于升压来说,它被称为直通矢量。在这种状态下,负载端可以短路通过上下设备的任何一组桥臂,任何两组桥臂,甚至所有的三组桥臂。 图 3 电压型 Z源逆变器 直流电压可以表示成为 dci BVV ( 2-1) dcV是电压源, B 是升压系数,它决定于 )(21 1 0 TTB ( 2-2) 0T是间隔一个周期 T 的导通时间。输出的电压峰值向量acV为 )2( dcac VMBV ( 2-3) M 是调制系数,电容电压可以表示为 dcCCC VTTTVVV )( 01121 ( 2-4) 01 TTT ( 2-5) iV和CV之间的关系为 dcCi VVV 2( 2-6) 电感的电流纹波可以这样计算 )( 0101 TTTTI ( 2-7) 图 4展示了 Z源逆变器基本的 PWM控制方法。 这种方法需要SCV和SCV两个额外的直线作为直通信号。当载波信号高于SCV或低于SCV,逆变电路会产生一个直通矢量。SCV可表示为 TTVSC 1 ( 2-8) 3 图 4 Z源逆变器的 PWM控制方法 在风 能变换系统中,带着输入电容(aC、bC和cC)的二极管整流桥作为 Z 源逆变器的直流源部分。这个结构如图 5所示。当二极管整流与逆变器处于直通状态时,输入电容抑制浪涌电压可能会产生线电感。 图 5 带二极管整流桥的 Z源逆变器 在任何时刻,只用拥有最大电位差的两相会导通,导通电流从永磁同步发电机侧流向阻抗网络侧。图 6展示每个周期六种可能的状态。在任何状态下,一个上桥臂,一个下桥臂和一个与它 们相连的电容是导通的。例如,当电位差在 a 相与 b 相达到最大,二极管paD和nbD以及它们相连的电容aC导通,如图 7所示。 4 图 6 整流器的六种导通状态 图 7 当电位差在 a相与 b相达到最大时的等效电路图 在每一个导通周期内,逆变电路有两种工作模式。模式 1,逆变电路工作于直通状态。这种模式下,二极管(paD和nbD)是关断的,直流侧与交流线路被分隔。图 8展示这种模式的等效电路。模式 2,逆变电路工作于六个有效矢量或两个零矢量当中,因此,可将带二极管 (paD和nbD)的 Z源逆变电路看成直流源。图 9展示这种模式的等效电路。负载电流ii在电路工作于零矢量时为零。 图 8 Z源逆变电路处于第一种模式的等效电路图 5 图 9 Z源逆变电路处于第一种模式的等效电路图 3 控制系统 控制系统的结构如图 10所示。控制系统由两部分组成: 1)电网功率的控制, 2)最大功率点的跟踪。 图 10 风能变换系统的控制方框图 1)电网功率的控制 在同步参考系中的功率方程为 )(23 qqdd ivivP ( 3-1) )(23 qddq ivivQ ( 3-2) P和 Q分别是有功和无功功率, V是电网电压, i是电网电流。下标 d和 q分别代表着直轴和交轴分量。如果参考系按照电网电压定向,qv就等于零。那么,有功与无功功率就可以表示为 6 dd ivP 23( 3-3) qd ivQ 23( 3-4) 根据上式,分别控制直轴和交轴电流就可以实现控制有功和无功功率。 两条控制路径用来控制这些电流。在第一条路径中,随着无功功率的给定, q 轴电流的参考值也给定了。为了获得单位的功率因数, q 轴电流的参考值应设为零。在第二条路径中,为了控制有功功率,用一个外部的电容电压控制回路来设定 d轴电流的参考值。这使得所有来自整流器的功率被传输到电网。对于这种控制有两种方法: 1)电容电压(cV)的控制 2)直流电压(iV)的控制。 第一种控制方法(控制模型 1如图 10所示),电容电压保持在参考值不变。在控制回路中,当直通时间改变,dcV和iV将会 改变。然而,另一种方法(控制模型 2如图 10所示),直流电压(iV)的参考量被设定。在这种方法中,当直通时间改变,dcV和cV将会改变。在直通状态下,逆变电路的输入电压为零,这使iV成为一个很难控制的变量。因此,如公式( 2-6)所示,通过控制cV间接控制iV。 2)最大功率点跟踪 风机的机械功率传递公式为 321 mpm VACP ( 3-5) 是空气密度; A 是风力机叶片迎风扫掠面积; mV 是风速; pC 是风能利用系数,定义为风力机输出功率和风能功率的比例,取决于叶片的空气动力学特性。图 11展示了风速变化时发电机的转速与风力机 输出功率之间的联系。可以看出,不同风速时最大功率所对应的发电机转速不同。 图 11 风速变化时机械功率与转子转速的关系 永磁同步发电机的稳态感应电压与转矩方程为 at IKT ( 3-6) 7 eKE ( 3-7) 是转子速度, aI 是定子电流。同时,我们知道 222 )( sa LIVE ( 3-8) V 是永磁同步发电机的端电压, sL 是其电感。整流后的直流电压为 VV dc 63 ( 3-9) 根据式( 3-7)、( 3-8)、( 3-9)可得 22 )(63tsedc KTLKV ( 3-10) 转矩决定于发电机转速和风速。因此根据式( 3-10),对于直流电压会得到一个关于转速和风速的函数式。 最后 ,通过设置直流电压就可以调节发电机转速。 8 A New Variable-Speed Wind Energy Conversion System Using Permanent-Magnet Synchronous Generator and Z-Source Inverter 1 INTRODUCTION Wind turbines usages as sources of energy has increased significantly in the world. With growing application of wind energy conversion system(WECSs), various technologies are developed for them. With numerous advantages , permanent-magnet synchronous generator(PMSG) generation system represents an important trend in development of wind power applications. Extracting maximum power from wind and feeding the grid with high-quality electricity are two main objectives for WECSs. To realize these objectives, the ac-dc-ac converter is one of the best topology for WECSs. Fig.1 shows a conventional configuration of ac-dc-ac topology for PMSG. This configuration includes diode rectifier, boost dc-dc converter and three-phase inverter. In this topology, boost converter is controlled for maximum power point tracking(MPPT) and inverter is controlled to deliver high-quality power to the grid. Fig.1. Conventional PMSG-based WECS with dc boost chopper The Z-source inverters have been reported recently as a competitive alternative to existing inverter topologies with many inherent advantages such as voltage boost. This inverter facilitates voltage boost capability with the turning ON of both switches in the same inverter phase leg (shoot-through state). In this paper, a new PMSG-based WECS with Z-source inverter is proposed. The proposed topology is shown in Fig. 2. With this topology, boost converter is omitted without any change in the objectives of WECS. Moreover, reliability of the system is greatly improved, because the short circuit across any phase leg of inverter is allowed. Also, in this configuration, inverter output power distortion is reduced, since there is no need to phase leg dead time. 9 Fig.2. Proposed PMSG-based WECS with Z-source inverter Section II of this paper introduces Z-source inverter and describes operation of rectifier feeding the Z-source inverter. Then, power delivery and MPPT control of system are explained. 2 Z-Source Inverter The Z-source inverter is shown in Fig. 3. This inverter has an impedance network on its dc side, which connects the source to the inverter. The impedance network is composed of two inductors and two capacitors. The conventional voltage source inverters have six active vectors and two zero vectors. However, the Z-source inverter has one extra zero vector (state) for boosting voltage that is called shoot-through vector. In this state, load terminals are shorted through both the upper and lower devices of any one phase leg, any two phase legs, or all three phase legs. Fig.3. Voltage-type Z-source inverter The voltage of dc link can be expressed as dci BVV ( 2-1) Where dcVis the source voltage and B is the boost factor that is determined by )(21 1 0 TTB ( 2-2) Where 0Tis the shoot-through time interval over a switching cycle T. The output peak phase voltage acVis )2( dcac VMBV ( 2-3) Where M is the modulation index. The capacitors voltage can expressed as 10 dcCCC VTTTVVV )( 01121 ( 2-4) Where 01 TTT ( 2-5) Relation between iVand cVcan be written as dcCi VVV 2( 2-6) And current ripple of inductors can be calculated by )( 0101 TTTTI ( 2-7) Fig. 4 illustrates the simple PWM control method for Z-source inverter. This method employs two extra straight lines as shoot-through signals, SCVand SCV. When the career signal is greater than SCVor it is smaller than SCV, a shoot-through vector is created by inverter. The value of SCVis calculated by TTVSC 1 ( 2-8) Fig.4. PWM control method for Z-source inverter In the proposed WECS, a diode rectifier bridge with input capacitors (aC,bCand CC) serves as the dc source feeding the Z-source inverter. This configuration is shown in Fig. 5. The input capacitors suppress voltage surge that may occur due to the line inductance during diode commutation and shoot-through mode of the inverter. 11 Fig.5. Z-source inverter fed with a diode rectifier bridge At any instant of time, only two phases that have the largest potential difference may conduct, carrying current from the PMSG side to the impedance network side. Fig. 6 shows six possible states during each cycle. In any state, one of upper diodes, one of lower diodes, and the corresponding capacitor are active. For example, when the potential difference between phases “a” and “b” is the largest, diodes paDand nbDconduct in series with capacitor aC, as shown in Fig. 7. Fig.6. Six possible conduction intervals for the rectifier Fig.7. Equivalent circuit when the potential difference between phases “a” and “b” is the largest. 12 In each conduction interval, inverter operates in two modes. In mode 1, the inverter is operating in the shoot-through state. In this mode, the diodes (paDand nbD) are off, and the dc link is separated from the ac line. Fig. 8 shows the equivalent circuit in this mode. In mode 2, the inverter is applying one of the six active vectors or two zero vectors, thus acting as a current source viewed from the Z-source circuit with diodes (paDand nbD) being on. Fig. 9 shows the equivalent circuit in this mode. The load current iis zero during zero vectors. Fig.8. Equivalent circuit of the Z-source inverter in mode 1 Fig.9. Equivalent circuit of the Z-source inverter in mode 2 3 CONTROL SYSTEM The structure of the control system is shown in Fig. 10. The control system is composed of two parts: 1) control of power delivered to the grid and 2) MPPT. 13 Fig.10. Block diagram of proposed WECS control system 1) Control of Power Delivered to the Grid The power equations in the synchronous reference frame are given by )(23 qqdd ivivP ( 3-1) )(23 qddq ivivQ ( 3-2) where P and Q are active and reactive power, respectively, v is grid voltage, and i is the current to the grid. The subscripts “d” and “q” stand for direct and quadrature components, respectively. If the reference frame is oriented along the grid voltage, qvwill be equal to zero. Then, active and reactive power may be expressed as dd ivP 23( 3-3) qd ivQ 23( 3-4) According to earlier equations, active and reactive power control can be achieved by controlling direct and quadrature current components, respectively. Two control paths are used to control these currents. In the first path, with given reactive power, the q-axis current reference is set. To obtain unit power factor, the q-axis current reference should be set to 0. In the second path, an outer capacitor voltage control loop is used to set the d-axis current reference for active power control. This assures that all the power coming from the rectifier is transferred to the grid. For this 14 control, two methods are proposed: 1) capacitor voltage (CV) control and 2) dc-link voltage (iV) control. In the first control method (control mode 1 in Fig. 10), capacitor voltage is kept constant at reference value. In the control loop, when shoot-through time changes, dcVand iVwill change. However, in other method (control mode 2 in Fig. 10), a reference value is set for dc-link voltage (iV). In this method, with changing shoot-through time, dcVand CVwill change. The input voltage of inverter is zero in shoot through state, which makes iVa difficult variable to control. Consequently, (2-6) is used to control iVindirectly by controlling CV. 2) Maximum Power Point Tracking The mechanical power delivered by a wind turbine is expressed as 321 mpm VACP ( 3-5) Where is the air density, A is the area swept out by t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论