平方根(第1课时)教学设计.1 平方根(第1课时)教学设计.doc_第1页
平方根(第1课时)教学设计.1 平方根(第1课时)教学设计.doc_第2页
平方根(第1课时)教学设计.1 平方根(第1课时)教学设计.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

株林中学2016年春季集体备课用纸课题实数主备教师许岚本课时内容三维目标1.理解算术平方根及其相关概念;2.会用根号表示数的算术平方根;3.领会算术平方根的求法.4.体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯.教学重点理解算术平方根概念,会用根号表示一个正数的算术平方根教学难点理解算术平方根的意义.课前准备多媒体课件教学方法“五环教学”法教学过程教学过程一、创设情境,导入新课1.我们早就熟知圆周率不属于有理数,它其实属于无理数,现实世界存在着许多无理数,有理数和无理数合起来形成更大的数域实数。本章将从平方根与立方根学起,学习实数的初步知识,并用这些知识解决一些实际问题。2.问题:小明家装修新居,计划用100块地板砖来铺设面积为25平方米的客厅地面,请帮他计算:每块正方形地板砖的边长为多少时,才正好合适(不浪费)?3.填表:正方形的面积14916253649640.01正方形的边长二、启发引导,探究新知(一)、算术平方根概念上面的问题,实际上是知道一个正数的平方,求这个正数的问题。一般地,如果一个正数的平方等于,即,那么这个正数叫做的算术平方根.的算术平方根记为,读作“根号”,叫做被开方数.规定:0的算术平方根是0.如9的算术平方根可以表示为,读作“根号9”.又因为32=9,所以3是9的算术平方根,从而.(二)、例题讲解1.求下列各数的算术平方根: (1) 100; (2) (3)0.0001分析:求算术平方根就是把平方运算逆过来思考,解题步骤体现了“一找(谁的平方等于这个数)、二答(这个数的算术平方根是谁)、三列式(式子表示这个数的算术平方根)”,初学阶段一定要按以下步骤书写,熟练之后方可直接列式.2求下列各式的值:(1) (2) (3) (4) 分析:(1) 表示的就是361的算术平方根,首先要找哪个数的平方等于361,因为只有个位是1或9的数,平方后个位还是1,可以尝试着找到这个数;(2)什么数的平方等于呢?可以分子、分母分开考虑;(3)哪个数的平方等于,即那个数的平方等于25;(4)可以通过计算几个数的平方进行尝试,如那么应该从60-70间找一个数x,使,你觉得x=62与x=68哪个可能性更大些?.归纳:.“确定那个数的平方等于a”,因为求的是算术平方根,即“求一个正数x,使它的平方等于a”,所以这里不考虑负数情况;.第(4)题中,找x=68的方法也可以通过计算把x锁定在60-70之间,再通过计算,把x锁定在65-70之间,继而再锁定在67-69间,这种方法称为“两端逼近”法,是数学中常用的方法.三、应用新知,变式展示1填空:(1)若 .(2) 的算术平方根是 _ .(3)的算术平方根是_ . (4) 若一个数的算术平方根为x-5,则x的取值范围是_ .(5) 若a +1有算术平方根,则a的取值范围是_ .(6) 若2a+b的算术平方根是3,a+b-1的算术平方根是2,则ab的算术平方根是_ .2求下列各数的算术平方根:(1)625; (2)0.0081; (3)6; (4)01下列各式中没有意义的是_,并说明另外三个式子的意义:A- BC D2求下列各式的值:(1) (2) (3) (4) 四、总结提升,融汇反思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论