



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 兴趣数学1 konigsberg 七桥问题(一笔画问题)18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。如图1所示:河中的小岛a与河的左岸b、右岸c各有两座桥相连结,河中两支流间的陆地d与a、b、c各有一座桥相连结。当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。七桥问题引起了著名数学家欧拉(17071783)的关注。他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从a、b、c、d中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图是不能一笔画出的图形。这就是说,七桥问题是无解的。这个结论是如何产生呢?如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。如果画笔经过一个n次,那么就有2n条线与该点相连结。因此,这个图形中除起点与终点外的各点,都与偶数条线相连。如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。图2中的a点与5条线相连结,b、c、d各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。欧拉定理 如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。练习:你能笔尖不离纸,一笔画出下面的每个图形吗?试试看。(不走重复线路)图例1图例2图例3图例42 四色问题人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。 这个地图着色问题,是一个著名的数学难题。大家不妨用一张中国政区图来试一试,无论从哪里开始着色,至少都要用上四种颜色,才能把所有省份都区别开来。所以,很早的时候就有数学家猜想:“任何地图的着色,只需四种颜色就足够了。”这就是“四色问题”这个名称的由来。 四色问题又称四色猜想,是世界近代三大数学难题之一。 四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”(右图)这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。数学史上正式提出“四色问题”的时间是在1852年。当时伦敦的大学的一名学生法朗西斯向他的老师、著名数学家、伦敦大学数学教授莫根提出了这个问题,可是莫根无法解答,求助于其它数学家,也没有得到答案。于是从那时起,这个问题便成为数学界的一个“悬案”。一直到二十年前的1976年9月,美国数学会通告正式宣布了一件震撼全球数学界的消息:美国伊利诺斯大学的两位教授阿贝尔和哈根,利用电子计算机证明了“四色问题”这个猜想是完全正确的!他们将普通地图的四色问题转化为2000个特殊图的四色问题,然后在电子计算机上计算了足足1200个小时,作了100亿判断,最后成功地证明了四色问题,轰动了世界。这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。3 麦比乌斯带每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(mbius.a.f 1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴4 分割图形分割图形是使我们的头脑灵活,增强观察能力的一种有趣的游戏。我们先来看一个简单的分割图形的题目分割正方形。在正方形内用4条线段作“井”字形分割,可以把正方形分成大小相等的9块,这种图形我们常称为九宫格。 用4条线段还可以把一个正方形分成10块,只是和九宫格不同的是,每块的大小不一定都相等。那么,怎样才能用4条线段把正方形分成10块呢?请你先动脑筋想想,在动脑的同时还要动手画一画其实,正方形是不难分割成10块的,下面就是其中两种分割方法。想一想,用4条线段能将正方形分成11块吗?应该怎样分?5数学故事(1)奇特的墓志铭在大数学家阿基米德的墓碑上,镌刻着一个有趣的几 何图形:一个圆球镶嵌在一个圆柱内。相传,它是阿基米 德生前最为欣赏的一个定理。 在数学家鲁道夫的墓碑上,则镌刻着圆周率的35位 数值。这个数值被叫做。”鲁道夫数”。它是鲁道夫毕生心血 的结晶。大数学家高斯曾经表示,在他去世以后,希望人们在他 的墓碑上刻上一个正17边形。因为他是在完成了正17边形 的尺规作图后,才决定献身于数学研究的 不过,最奇特的墓志铭,却是属于古希腊数学家丢番 图的。他的墓碑上刻着一道谜语般的数学题: “过路人,这座石墓里安葬着丢番图。他生命的16 是幸福的童年,生命的112是青少年时期。又过了生命 的 1 7他才结婚。婚后 5年有了一个孩子,孩子活到他 父亲一半的年纪便死去了。孩子死后,丢番图在深深的悲 哀中又活了4年,也结束了尘世生涯。过路人,你知道丢 番图的年纪吗?” 丢番图的年纪究竟有多大呢? 设他活了x岁,依题意可列出方程。这样,要知道丢番图的年纪,只要解出这个方程就行了。这段墓志铭写得太妙了。谁想知道丢番图的年纪,谁 就得解一个一元一次方程;而这又正好提醒前来瞻仰的人 们,不要忘记了丢番图献身的事业。在丢番图之前,古希腊数学家习惯用几何的观点看待 遇到的所有数学问题,而丢番图则不然,他是古希腊第一 个大代数学家,喜欢用代数的方法来解决问题。现代解方程的基本步骤,如移项、合并同类项、,方程两边乘以同一因子等等,丢番图都已知道了。他尤其擅长解答不定方 程,发明了许多巧妙的方法,被西方数学家誉为这门数学 分支的开山鼻祖。(2)希腊十字架问题图上那只巨大的复活节彩蛋上有一个希腊十字架,从它引发出许多切割问题,下面是其中的三个。(a)将十字架图形分成四块,用它们拼成一个正方形; 有无限多种办法把一个希腊十字架
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老旧供水管网检测与修复技术升级方案
- 2025秋季学期国开电大法律事务专科《刑法学(2)》期末纸质考试简答题题库珍藏版
- 胎儿异常护理周立蓉28课件
- 桥梁材料性能检测方案
- 纬编布生产线项目人力资源管理方案
- 水电站运行管理课件
- 水电煤气安全知识培训课件
- 水电施工知识课件
- 二零二五年电子显示屏广告租赁合同
- 二零二五年门窗安装与绿色环保认证合作协议
- 海事管理培训课件
- 《曾国藩传》读书分享课件
- 十五五林业发展规划(完整版)
- 厂区安保巡逻管理制度
- T/CECS 10209-2022给水用高环刚钢骨架增强聚乙烯复合管材
- 项目包装合作协议书
- 安徽省合肥一中2025届高三5月回归教材读本
- 2024年江西省投资集团有限公司总部招聘考试真题
- 2025年04月广东省特种设备检测研究院东莞检测院招考笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 老年人生命教育
- 院感相关法律法规知识培训
评论
0/150
提交评论