




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
由递推式求数列通项的典型题的技巧解法对于由递推公式确定的数列的求解,通常可以通过递推公式的变换转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。类型1 递推公式为解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例1. 已知数列满足,求数列的通项公式。解:由条件知:分别令,代入上式得个等式累加之,即所以,类型2 (1)递推公式为解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例2. 已知数列满足,求数列的通项公式。解:由条件知,分别令,代入上式得个等式累乘之,即又,(2)由和确定的递推数列的通项可如下求得:由已知递推式有, ,依次向前代入,得,简记为 ,这就是叠(迭)代法的基本模式。(3)递推式:解法:只需构造数列,消去带来的差异。例3设数列:,求数列的通项公式。解:设,将代入递推式,得()则,又,故代入()得说明:(1)若为的二次式,则可设;(2)本题也可由 ,()两式相减得转化为求之.例4已知, ,求数列的通项公式。解: 类型3 递推公式为(其中p,q均为常数,)。解法:把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。在数列中,若,则该数列的通项 。例5. 已知数列中,求数列的通项公式。解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.类型4 递推公式为(其中p,q均为常数,)。 (或,其中p,q, r均为常数)解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以,得:。引入辅助数列(其中),得:再应用类型3的方法解决。例6. 已知数列中,,,求数列的通项公式。解:在两边乘以得:令,则,应用例7解法得:所以类型5 递推公式为(其中p,q均为常数)。解法:先把原递推公式转化为其中s,t满足,再应用前面类型3的方法求解。已知数列满足求数列的通项公式。例7. 已知数列中,,,求数列的通项公式。解:由可转化为即或这里不妨选用(当然也可选用,大家可以试一试),则是以首项为,公比为的等比数列,所以,应用类型1的方法,分别令,代入上式得个等式累加之,即又,所以。类型6 递推公式为与的关系式。(或)解法:利用进行求解。例8. 已知数列前n项和,(1) 求与的关系;(2) 求数列的通项公式。解:(1)由得:于是所以.(2)应用类型4的方法,上式两边同乘以得:由.于是数列是以2为首项,2为公差的等差数列,所以类型7 双数列型解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。例9. 已知数列中,;数列中,。当时,,,求数列、的通项公式。解:因所以即(1)又因为所以.即(2)由(1)、(2)得:, 总结方法比做题更重要!方法产生于具体数学内容的学习过程中.练习题1.(2010上海文数)已知数列的前项和为,且,求的通项公式.()2.(2010重庆理数)在数列中,=1,其中实数,求的通项公式.(,)3.(2010四川理数)已知数列an满足a10,a22,且对任意m、nN*都有a2m1a2n12amn12(mn)2()求a3,a5;()设bna2n1a2n1(nN*),证明:bn是等差数列;()设cn(an+1an)qn1(q0,nN*),求数列cn的前n项和Sn.()a36,a520;()Sn)4.(2009全国卷理)在数列中,设,求数列的通项公式. (,).5.(2009湖北卷理)已知数列的前n项和(n为正整数)。令,求证数列是等差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时间管理课件案例
- 小学电子积木课件
- 天猫客服售前培训
- 珠海LP周报2025版丨千亿LP参与的教育培训合同披露
- 2025版南京市二手房买卖合同附物业管理及房屋验收条款
- 2025版个人教育培训机构合伙经营协议范本
- 二零二五年园林绿化苗木种植项目合作协议书
- 二零二五年度厨具租赁服务合同
- 二零二五版数据中心布线项目工程合同
- 高三试卷:四川省雅安市2024-2025学年高三上学期11月零诊试题数学试卷
- 社区团购团长起号流程
- 安徽省高速公路施工标准化指南
- 国网超市化招标评标自动计算表(区间复合平均价法)
- GB/T 21218-2023电气用未使用过的硅绝缘液体
- 2023电赛综合测评报告
- 人教版九年级上册化学默写总复习
- 医院培训课件:《输血管理查房》
- 公开招聘事业单位工作人员政审表
- DB51∕T 2152-2016 实验室通风柜使用指南
- 项目经理负责制与项目管理实施办法范文2篇
- 2022-2023年医疗招聘药学类-西药学高频考点题库附加答案
评论
0/150
提交评论