顺序统计量ppt课件.pptx_第1页
顺序统计量ppt课件.pptx_第2页
顺序统计量ppt课件.pptx_第3页
顺序统计量ppt课件.pptx_第4页
顺序统计量ppt课件.pptx_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2节顺序统计量 一 定义 定义 设 X1 X2 Xn 是从总体X中抽取的一个样本 x1 x2 xn 是其中一个观测值 将观测值按从小到大的次序重新排列为 1 1 定义 X k 取值为x k k 1 2 n 由此得到 1 2 称其为样本 X1 X2 Xn 的次序统计量 对应的 1 2 称为其观测值 特别的 说明 m 1 为最大顺序统计量 1 min1 为最小顺序统计量 由于每个X k 都是样本 x1 x2 xn 的函数 所以 1 2 也都是随机变量并且它们一般不相互独立 X k 称为第k个顺序统计量 即它的每次取值总是取每次样本观测值由小到大排序后的第k个值 二 常用顺序统计量 极差中位数分位数四分位数 1 极差 为样本极差 极差反映了随机变量X取值的分散程度 排序后处于中间位置上的值 不受极端值的影响主要用于顺序数据 也可用数值型数据 但不能用于分类数据各变量值与中位数的离差绝对值之和最小 即 1 2 中位数 位置确定 中位数位置 数值确定 为奇数 为偶数 3 分位数 设 1 1 为取自总体X的次序统计量 称Mp为p分位数 1 若 不是整数 12 1 若 是整数 4 四分位数 排序后处于25 和75 位置上的值 不受极端值的影响计算公式 五数概括与箱线图 次序统计量的应用之一就是五数概括与箱线图 在得到有序样本后 容易计算如下五个值 最小观测值xmin x 1 最大观测值xmax x n 中位数m0 5 第一4分位数Q1 m0 25第三4分位数Q3 m0 75 所谓五数概括就是指用这五个数来大致描述一批数据的轮廓 三 顺序统计量的分布 1 单个顺序统计量的分布 设总体X的密度函数为f x 分布函数为F x x1 x2 xn为样本 则第k个次序统计量x k 的密度函数为 1 11 证明 对任意的实数x 考虑次序统计量x k 取值落在小区间 x x x 内这一事件 它等价于 样本容量为n的样本中有1个观测值落在区间 x x x 之间 而有k 1个观测值小于等于x 有n k个观测值大于x x 其直观示意图见下图 x k 的取值示意图 样本的每一分量小于等于x的概率为F x 落入区间 x x x 概率为F x x F x 落入区间 x x b 的概率为1 F x x 而将n个分量分成这样的三组 总的分法有 1 1 种 于是 若以Fk x 记x k 的分布函数 则由多项分布可得 两边同除以 x 并令 x 0 即有 推论1 最大次序统计量x n 的概率密度函数为 推论2 最小次序统计量x 1 的概率密度函数为 1 11 lim 0 1 1 1 1 按概率密度函数计算次序统计量的密度函数 设F x 是总体X的分布函数 X1 X2 Xn为X的样本 X 1 X 2 X n 为顺序统计量 F 1 x F n x 分别表示随机变量X 1 X n 的分布函数 则对任意实数x有 P 1 2 1 1 1 1 1 1 1 P 1 2 1 1 1 1 1 按概率密度函数计算次序统计量的密度函数 当X为连续型随机变量且有密度函数f x 时 则X 1 X n 也是连续型随机变量 且它们的密度函数分别为 1 1 1 1 1 例1 设总体X分布为U 0 X1 X2 Xn是取自总体的样本 试写出X 1 X n 的密度函数 例2 设总体X G l X1 X2 Xn为X的样本 求 f 1 x f n x 0 0 0 F 1 0 0 0 1 1 1 1 00 0 1 1 1 00 0 例3 设 X1 X2 Xn 是来自正态总体N 12 9 的样本 求 1 max 1 5 182 m 1 5 9 解 1 因X1 X2 Xn独立 且服从相同分布 max 1 5 18 1 max 1 5 18 1 1 18 5 18 1 15 18 1 1 185 1 18 1235 1 25 1 0 97725 0 1089 2 m 1 5 9 1 m 1 5 9 1 1 9 5 9 1 1 95 1 1 9 1235 1 1 15 1 15 1 0 84135 0 5785 例4 设总体X的密度函数为f 3 2 0 1 现从该总体中抽得一个容量为5的样本 试计算 2 12 解 我们首先应求出x 2 的分布 由总体密度函数不难求出总体分布函数为 可以得到x 2 的密度函数为 于是 四 思考 样本X1 X2 Xn是一组独立同分布的随机变量 那么顺序统计量 1 2 是否是一组独立同分布的随机变量 设总体X的分布如下 现抽取容量为3的样本 共有27种可能取值 列表如下 例5 设总体X的分布为仅取0 1 2的离散均匀分布 其分布各不相同 进而可得X 1 与X 2 的联合分布如下 X 1 与X 2 并不独立 X 1 由此可得X 1 X 2 X 3 的分布列如下 注 在一个样本中 X1 X2 Xn是独立同分布的 而次序统计量X 1 X 2 X

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论