其对称性揭示了行星齿轮减速器独立振荡#中英文翻译#外文翻译匹配_第1页
其对称性揭示了行星齿轮减速器独立振荡#中英文翻译#外文翻译匹配_第2页
其对称性揭示了行星齿轮减速器独立振荡#中英文翻译#外文翻译匹配_第3页
其对称性揭示了行星齿轮减速器独立振荡#中英文翻译#外文翻译匹配_第4页
其对称性揭示了行星齿轮减速器独立振荡#中英文翻译#外文翻译匹配_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计(论文) 译文及原稿 译文题目 一: 其对称性揭示了行星齿轮减速器独立振荡 原稿题目 一: Revealing of Independent Oscillations in Planetary Reducer Gear owing to its symmetry 原稿 出处: L.Banakh, u. Fedoseev, IFToMM World Congress,Besanon(France), 2007(12): 18-21 其对称性揭示了行星齿轮减速器独立振荡 摘要 : 行星减速 器的行星齿轮是对称的机械系统。适用于对称群的代表理论的振荡分析是属于广义的机械系统。结果发现 , 由于减速器的对称性 , 衍生出了振荡分解。减速器有独立的振荡类别,例如,太阳轮和本轮卫星轮角振荡阶段;太阳轮和本轮卫星横向振荡反阶段。太阳轮和本轮振荡中的一个阶段不依赖与角行星轮振荡。 关键词 : 行星减速器,对称性,组代表性的理论,独立振荡 1 导言 众所周知,运作的行星减速器振荡的因素有太阳轮,本轮,和行星轮,这些因素基本上不利于减速器的运行,在某些情况下可能会导致其曲率的破坏。有大量的专门研究减速器齿轮动力学分析的 文件。基本上都是理论研究,在已有的文件中介绍了研究减速器动力学的分析方法。 行星减速器具有高度的对称性。因此,这个结论被广泛引用,组代表性的理论也适用。这一理论的应用允许用对称性对其展开深入的动态分析。为此,必须有一个能考虑到减速器各要素之间刚度联系的动力学模型。 对称组代表性的理轮的数学仪器被广泛应用在量子力学,晶体,光谱。这种方法的优点是很难估算的。有他的帮助能够确定详尽完备的动力特性,使用结构对称的系统仅仅不能确定运动方程。然而,这一经典力学方法也不能被广泛使用。这是因为一些特殊的机械系统所具有的特点 。首先,目前需要一个有 6 个自由度的刚体。不清楚的是要怎样放置这个刚体才能使系统的对称性稳定。第二,真正可能的是技术设计的错误和安装上的错误。所以即使一个小小的不对称也可能导致系统成为准对称系统。有各种对称组的多个子系统组成了机械系统。在这方面必须有方法,来分析有各种分系统和固体组成的对称机械系统和准对称机械系统。在取得了一些初步的进展后,包括数学仪器的机械系统可以使用。为此, 研究者 提出申请广义操作。这些操作有适当的命令的矩阵,而不是表在物理。利用广义操作可以考虑到所有上述功能的机械系统。对初步的刚度矩阵实施 这些操作,导致其分解为独立的 模块,每个模块独立对应与自己的振荡级。考虑到固体对称相当与点 输入:这些点选择在固体上,因此,它们彼此独立又互相关联,并且组成所有系统的对称组。这些做法也可以用于有限元模型。 2 动态模型的行星减速器,刚度矩阵 该模型的行星减速器第一步如图 2.1 所示。 步骤包括由太阳轮,其质量和半径等于1M,1r,它的周围有 3 星轮 it ( 1, 2 , 3 , )Si(它们 的质量和半径均相等,都等于2m,2r)。行星轮和它们连接,并由它带动。齿轮传动装置的太阳轮,行星轮的刚度等于1h后, r 是角传动装置。 S 太阳轮, 本轮 , 1, 2, 3 行星轮 图 2.1 行星减速器图 考虑所有行星减速器振荡的步骤:横向( x, y), 角( j)振荡(不包括套管)。一个刚度矩阵可以代表一个块。 这里主要有角刚度( 3*3)采取适当 的内容,和外面的主对角线的刚度,这些要素之间有联系。有 15 个广义坐标 : 根据这些区块提附录。 因此矩阵 k 是( 15*15),一个惯性矩阵 m 是对角线矩阵。 3 介绍相当于点动态模型 对称性操作凭借对称性行星轮紧固本轮系统已对称,如 3 架 c(三角形)。 揭示对称 3 架 c 移动太阳齿轮 s 和本轮 Ep 研究者 将进入坐标 L1, L2, L3 ,行星轮固定在太阳轮上的 s 点如图 3.1。 图 3.1 行星轮图 将行星轮 1, 2, 3 分别固定在图上太阳轮所示位置。它们是等分点,它们的坐标分别是: 或以矩阵形式写 类似于本轮上的等 分点,但是在图 3.1 中1r必须等于3r。它们将协调太阳轮和本轮的 x, y, j。之后整个坐标系应对称与3c。因此有可能适用于所有有 s, Ep,和三颗行星轮( i=1, 2, 3)。 该邻正常投影算子克对称性点组3c被称为 2。 它是 对于整个系统的操作必须射影派块对角矩阵 这里每个分矩阵对应与 s, Ep 和三个行星轮( i=1, 2, 3)。因为 三个相同的行星轮并且它们有三个自由度 ( a n d a n g u l a r . . . )i i i is t s t s t s txy ,因此有必要深入每一步操作,把tsg当作每个元素都是对角矩阵( 3*3 )的块 矩阵,它可以代表每一个元素。 因此太阳轮和本轮最初的坐标( x, y, ) S, Ep可以互换 A 和 G。由此产生的变化是最初的矩阵 K 等于新产生的矩阵 GA, 它们看起来很像。 通过应用这一转变从矩阵 K1中 可以得到 因此,调节力和力相 应的转变为: 最初的矩阵 K(15x15)分为 3 个独立块( 5*5),它们看上去很像 惯性矩阵 M 仍然为对角线矩阵,因为 GA 是正交的,因此独立的振振荡类型只定义为矩阵 K*。 4 揭示自然振荡和强迫振荡的独立运动类型 A、自然振荡 从矩阵( 6)中可以看到,由于系统的对称性,对原始矩阵 K 进行分解,因此振荡类型和空间参数都各不相同。具体的关系在矩阵( 6)中表明,有以下的振荡类型: 第一,太阳轮和本轮角振荡 +行星轮振荡阶段,其确定参数是: 1 2 3 1 3 6 1 2 1 3 9, , , , , , , ,r r r h h h h r h第二,太阳轮和本 轮横向振荡 +行星轮振荡反阶段。产生了俩个相同的矩阵*(1) *( 2 ),KK( 5*5)这意味着在系统中有 5 个平等频率。其确定的参数是:2 1 3 6 7 9, , , , , ,r h h h h h因此考虑到只有性能的对称性有可能获得足够深的动态分析性能的系统的行星减速器,他除了能简化也能优化系统的过程。 B、强迫振荡 强迫振荡中独立振荡的使用仅适用于两种情况 : a, 如果点的适用外部有相同类型的对称性;例如作为设计的。 b, 如果它们要根据独立振荡的类型处理,真的,然后变换( 5)把力 F *换 成含零元素或已次子或二次子。 减速器实际装载力的分析表明,它是有效的,如果系统是不平横的,同样的 :a, 相同的行星轮不平衡 +本轮不平衡; b, 相同的行星轮不平衡 +太阳轮不平衡。 5 进一步的动作分解 进一步分解( 6)中子一和二只要有附加条件,使这类系统成为对称系统是 可能的。一些特殊的条件可以使太阳轮和本轮有对称性,例如: 1、 S 和 EP 有相同的传动刚度,即 2、 S 和 EP 有相同的部分频率和角速度,即 因此,若满足条件 1, 2 ,2vC则会出现反对称,这一对称足 组的操作22()G or G 是符合 实施这些操作后矩阵 K*会出现相应的变化,真的它们可能有太阳轮和本轮的振荡对称和反振荡对称。因此,坐标变换是: 和 这个坐标变换出以下独立运动的类型 具体的关系表明这些矩阵有以下独立的振荡类型: I 子(矩阵 K) 太阳轮 S 的角振荡和本轮 EP 的相 +行星轮的振荡轴线 X*在第一阶段 II 子(矩阵 K) 太阳轮 S 的角振 荡和本轮 EP 的反相 +行星轮的振荡的轴线 Y*的阶段。同样发生分解子二和矩阵 *(1) *( 2 ),KK而是 S 和 EP 的横向振荡沿轴 X*, (Y*)和振荡中的行星轮有个反阶段。 为显示分析矩阵 的振荡 S 和 EP 中的一个阶段并不取决于角振荡行星轮。从分析 K和 K注意到, h7=h8=h6=0 可能出现。这种振荡类型是指太阳轮和本轮,行星轮的自由振荡。 A、强迫振荡。根据这些振荡类型不 诱导其它振荡类型去掉外力,因为它们是相互正交的。冲击力提供了一个子二独立的对称与反对称性振荡 S 和 EP 如果它们同事适用 S 和 EP 有平等的价值, 然后转化为外部力量 。 表格加载的外部力量 这些加载的外力不诱导反对称振荡类型。 6 结论 有规定,行星齿轮减速器由于其对称性其振荡分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论