免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
*STEADY STATE DYNAMICSSteady-state dynamic response based on harmonic excitation.This option is used to calculate the systems linearized steady-state response to harmonic excitation.Product: Abaqus/StandardType: History data Level: StepReferences: “Direct-solution steady-state dynamic analysis,” Section 6.3.4 of the Abaqus Analysis Users Manual “Mode-based steady-state dynamic analysis,” Section 6.3.8 of the Abaqus Analysis Users Manual “Subspace-based steady-state dynamic analysis,” Section 6.3.9 of the Abaqus Analysis Users ManualOptional and mutually exclusive parameters (used only if the dynamic response is not based on modal superposition)Optional and mutually exclusive parameters (used only if the dynamic response is not based on modal superposition):DIRECT Include this parameter to compute the steady-state harmonic response directly in terms of the physical degrees of freedom of the model. This usually makes the procedure significantly more expensive, but it can be used if model parameters depend on frequency, if the stiffness of the system is unsymmetric and the unsymmetric terms are important, or if the system contains discrete damping (such as dashpot elements).SUBSPACE PROJECTION Include this parameter to compute the steady-state harmonic response on the basis of the subspace projection method. In this case a direct solution is obtained for the model projected onto the eigenvectors obtained in the preceding *FREQUENCY step. This is a cost-effective approach to including consideration of unsymmetric stiffness and frequency-dependent model parameters. It is more expensive than the modal superposition method but less expensive than the direct-solution method.Set SUBSPACE PROJECTION=ALL FREQUENCIES (default) if the projection of the dynamic equations onto the modal subspace is to be performed at each frequency requested on the data lines.Set SUBSPACE PROJECTION=CONSTANT if a single projection of the dynamic equations onto the modal subspace is to be used for all frequencies requested on the data lines. The projection is performed using model properties evaluated at the center frequency determined on a logarithmic or linear scale depending on the value of the FREQUENCY SCALE parameter.Set SUBSPACE PROJECTION=EIGENFREQUENCY if the projections onto the modal subspace of the dynamic equations are to be performed at each eigenfrequency within the requested ranges and at the eigenfrequencies immediately outside these ranges. The projections are then interpolated at each frequency requested on the data lines. The interpolation is done on a logarithmic or linear scale depending on the value of the FREQUENCY SCALE parameter.Set SUBSPACE PROJECTION=PROPERTY CHANGE to select how often subspace projections onto the modal subspace are performed based on material property changes as a function of frequency. The interpolation is done on a logarithmic or linear scale depending on the value of the FREQUENCY SCALE parameter.Set SUBSPACE PROJECTION=RANGE if the projections onto the modal subspace of the dynamic equations are to be performed at the lower limit of each frequency range and at the upper limit of the last frequency range. The interpolation is done on a linear scale. This value can be used only with the SIM architecture.Optional parametersOptional parameters: DAMPING CHANGE This parameter is relevant only for SUBSPACE PROJECTION=PROPERTY CHANGE.Set this parameter equal to the maximum relative change in damping material properties before a new projection is to be performed. The default value is 0.1.FREQUENCY SCALE Set this parameter equal to LOGARITHMIC (default) or LINEAR to determine whether a logarithmic or linear scale is used for output. If the SUBSPACE PROJECTION parameter is included and is set equal to either EIGENFREQUENCY or PROPERTY CHANGE, the same scale will be used for the interpolation of the subspace projections.FRICTION DAMPING This parameter is relevant only if the DIRECT or the SUBSPACE PROJECTION parameter is included.Set FRICTION DAMPING=NO (default) or YES to ignore or to include friction-induced damping effects at the slipping contact interface for which a velocity differential is imposed.INTERVAL Set INTERVAL=EIGENFREQUENCY if the frequency ranges specified on each data line are to be subdivided using the systems eigenfrequencies. This option requires a preceding *FREQUENCY step and is the default if the DIRECT parameter is omitted.Set INTERVAL=RANGE if the frequency range specified on each data line is to be used directly. This option is the default if the DIRECT parameter is included.REAL ONLY This parameter is relevant only if the DIRECT or the SUBSPACE PROJECTION parameter is included.Include this parameter if damping terms are to be ignored so that a real, rather than a complex, system matrix is factored. This option can reduce computational time significantly for the DIRECT procedure and, to a lesser extent, for the SUBSPACE PROJECTION procedure.STIFFNESS CHANGE This parameter is relevant only for SUBSPACE PROJECTION=PROPERTY CHANGE.Set this parameter equal to the maximum relative change in stiffness material properties before a new projection is to be performed. The default value is 0.1.Data lines for a steady-state dynamics analysisData lines for a steady-state dynamics analysis:First line:1. Lower limit of frequency range or a single frequency, in cycles/time.2. Upper limit of frequency range, in cycles/time. If this value is given as zero, it is assumed that results are required at only one frequency and the remaining data items on the line are ignored.3. Number of points in the frequency range at which results should be given. If INTERVAL=EIGENFREQUENCY, this is the number of points at which results should be given, including the end points, from the lower limit of the frequency range to the first eigenfrequency in the range; in each interval from eigenfrequency to eigenfrequency; and from the highest eigenfrequency in the range to the high limit of the frequency range. If INTERVAL=RANGE, this is the total number of points in the frequency range, including the end points. The minimum value is 2. If the value given is less than 2 (or omitted), the default value of 20 points is assumed.4. Bias parameter. This parameter is useful only if results are requested at four or more frequency points. It is us
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 张家口市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(培优a卷)
- 2026年崇左市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(满分必刷)
- 茂名市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)有完整答案详解
- 汕头市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(考试直接用)
- 2026年崇左市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(综合卷)
- 上海市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(黄金题型)
- 安庆市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(名师系列)
- 铜陵市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解ab卷
- 枣庄市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(典型题)
- 宝鸡市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解
- 学前教育应聘
- 智能家具创投项目计划书
- 2024年河南省襄城县人民医院公开招聘医务工作人员试题带答案详解
- 2025年公共基础知识综合考试练习题及解析答案
- 5工程审计管理制度
- 购买轮挖合同协议书
- 船舶碰撞协议书
- 货运部转让合同协议书
- 信息安全应急演练报告
- ZS银行资产托管业务对盈利模式的重塑与影响探究
- 《腰痛的康复治疗》课件
评论
0/150
提交评论