




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学第二单元函数奇偶性练习题函数奇偶性知识点:1定义 一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做奇函数。 1定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做奇函数。(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。说明:奇、偶性是函数的整体性质,对整个定义域而言奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)判断或证明函数是否具有奇偶性的根据是定义2奇偶函数图像的特征:定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。f(x)为奇函数f(x)的图像关于原点对称点(x,y)(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。3.奇偶函数运算(1) . 两个偶函数相加所得的和为偶函数。(2) . 两个奇函数相加所得的和为奇函数。(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。(4) . 两个偶函数相乘所得的积为偶函数。(5) . 两个奇函数相乘所得的积为偶函数。(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.典型例题分析:例1:已知y=f(x)是奇函数,它在(0,+)上是增函数,且f(x)0,试问:F(x)= 在(,0)上是增函数还是减函数?证明你的结论思维分析:根据函数单调性的定义,可以设x1x20,进而判断:F(x1) F(x2)= = 符号解:任取x1,x2(,0),且x1x20因为y=f(x)在(0,+上是增函数,且f(x)0,所以f(x2)f(x1)f(x1)0于是F(x1) F(x2)= 例2:已知 是定义域为 的奇函数,当x0时,f(x)=x|x2|,求x0时,f(x)的解析式解:设x0且满足表达式f(x)=x|x2|所以f(x)= x|x2|=x|x+2|又f(x)是奇函数,有f(x)= f(x) 所以f(x)= x|x+2|所以f(x)=x|x+2| 故当x0,求实数m的取值范围【解析】由f(m)f(m1)0,得f(m)f(m1),即f(1m)f(m)又f(x)在0,2上为减函数且f(x)在2,2上为奇函数,f(x)在2,2上为减函数, 即, 解得1m.高一数学第二单元函数奇偶性练习题一一、选择题1已知函数f(x)ax2bxc(a0)是偶函数,那么g(x)ax3bx2cx()A奇函数B偶函数C既奇又偶函数D非奇非偶函数2已知函数f(x)ax2bx3ab是偶函数,且其定义域为a1,2a,则()A,b0Ba1,b0 Ca1,b0Da3,b03已知f(x)是定义在R上的奇函数,当x0时,f(x)x22x,则f(x)在R上的表达式是()Ayx(x2)By x(x1)Cy x(x2)Dyx(x2)4已知f(x)x5ax3bx8,且f(2)10,那么f(2)等于()A26B18C10D105函数是A偶函数B奇函数C非奇非偶函数D既是奇函数又是偶函数6若,g(x)都是奇函数,在(0,)上有最大值5,则f(x)在(,0)上有A最小值5B最大值5C最小值1D最大值3二、填空题7函数的奇偶性为_(填奇函数或偶函数)8若y(m1)x22mx3是偶函数,则m_9已知f(x)是偶函数,g(x)是奇函数,若,则f(x)的解析式为_10已知函数f(x)为偶函数,且其图象与x轴有四个交点,则方程f(x)0的所有实根之和为_三、解答题11设定义在2,2上的偶函数f(x)在区间0,2上单调递减,若f(1m)f(m),求实数m的取值范围12已知函数f(x)满足f(xy)f(xy)2f(x)f(y)(xR,yR),且f(0)0,试证f(x)是偶函数13.已知函数f(x)是奇函数,且当x0时,f(x)x32x21,求f(x)在R上的表达式14.f(x)是定义在(,55,)上的奇函数,且f(x)在5,)上单调递减,试判断f(x)在(,5上的单调性,并用定义给予证明15.设函数yf(x)(xR且x0)对任意非零实数x1、x2满足f(x1x2)f(x1)f(x2),求证f(x)是偶函数高一数学第二单元函数奇偶性练习题二一、选择题1若是奇函数,则其图象关于( )A轴对称B轴对称C原点对称D直线对称2若函数是奇函数,则下列坐标表示的点一定在函数图象上的是( ) A B C D 3下列函数中为偶函数的是( )ABCD4. 如果奇函数在上是增函数,且最小值是5,那么在上是( )A增函数,最小值是-5B增函数,最大值是-5C减函数,最小值是-5D减函数,最大值是-5 5. 已知函数是奇函数,则的值为( )ABCD6.已知偶函数在上单调递增,则下列关系式成立的是( ) ABCD二、填空题7若函数是奇函数,则的值为_ . 8若函数是偶函数,且,则与的大小关系为_9已知 是定义在上的奇函数,当 时, 的图象如右图所示,那么f (x) 的值域是 .10已知分段函数是奇函数,当时的解析式为 ,则这个函数在区间上的解析式为 三、解答题11. 判断下列函数是否具有奇偶性: (1); (2) ;(3); (4) ; (5) .12判断函数的奇偶性,并指出它的单调区间.13已知二次函数的图象关于轴对称,写出函数的解析表达式,并求出函数的单调递增区间.能力题14设是定义在上的偶函数,且在上是增函数,则与()的大小关系是( ) ABCD与的取值无关若函数 15已知是奇函数,是偶函数,且在公共定义域上有,求的解析式. 高一数学第二单元函数奇偶性练习题一答案1解析:f(x)ax2bxc为偶函数,为奇函数,g(x)ax3bx2cxf(x)满足奇函数的条件答案:A2解析:由f(x)ax2bx3ab为偶函数,得b0又定义域为a1,2a,a12a,故选A3解析:由x0时,f(x)x22x,f(x)为奇函数,当x0时,f(x)f(x)(x22x)x22xx(x2)即f(x)x(|x|2)答案:D4解析:f(x)8x5ax3bx为奇函数,f(2)818,f(2)818,f(2)26答案:A5解析:此题直接证明较烦,可用等价形式f(x)f(x)0答案:B6解析:、g(x)为奇函数,为奇函数又f(x)在(0,)上有最大值5,f(x)2有最大值3f(x)2在(,0)上有最小值3,f(x)在(,0)上有最小值1答案:C7答案:奇函数8答案:0解析:因为函数y(m1)x22mx3为偶函数,f(x)f(x),即(m1)(x)22m(x)3(m1)x22mx3,整理,得m09解析:由f(x)是偶函数,g(x)是奇函数,可得,联立,答案: 10答案:0 11答案:12证明:令xy0,有f(0)f(0)2f(0)f(0),又f(0)0,可证f(0)1令x0,f(y)f(y)2f(0)f(y)f(y)f(y),故f(x)为偶函数13解析:本题主要是培养学生理解概念的能力f(x)x32x21因f(x)为奇函数,f(0)0当x0时,x0,f(x)(x)32(x)21x32x21,f(x)x32x21因此,点评:本题主要考查学生对奇函数概念的理解及应用能力14解析:任取x1x25,则x1x25因f(x)在5,上单调递减,所以f(x1)f(x2)f(x1)f(x2)f(x1)f(x2),即单调减函数点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化15解析:由x1,x2R且不为0的任意性,令x1x21代入可证,f(1)2f(1),f(1)0又令x1x21,f1(1)2f(1)0,(1)0又令x11,x2x,f(x)f(1)f(x)0f(x)f(x),即f(x)为偶函数点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x1x21,x1x21或x1x20等,然后再结合具体题目要求构造出适合结论特征的式子即可高一数学第二单元函数奇偶性练习题二答案一、选择
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 律师事务所客户管理系统建设方案
- 机动车安全技术检测标准GB7258详解
- 光伏电站并网验收专项检查报告
- 种植观赏植物打造一个色彩斑斓的花园世界
- 制定促销活动提升品牌优势
- 考研复试心理素质调养经验探索分享
- 绿色农业助力乡村振兴
- 提高养殖业环保措施
- 职业教育政策规程
- 培养品牌忠实粉丝提升品牌口碑
- 病历质控培训课件
- 老年骨质疏松性疼痛诊疗与管理中国专家共识2024解读课件
- 电机维护检修培训课件
- 建筑工程后续服务承诺与质量保障措施
- GB/T 44808.4-2024人类工效学无障碍设计第4部分:不同年龄人群最小可辨认字符尺寸的估计方法
- 如何培养学生的自主管理能力
- 《精子形成过程》课件
- 临床三基培训课件
- 2024-2030年中国沙拉汁市场面临的发展商机及投资竞争力分析报告
- 高中英语新课标3000词汇表
- 体育训练安全应急预案
评论
0/150
提交评论