



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥曲线的综合应用教案广水一中 孙坤明 2013.5.7一、圆锥曲线的最值问题方法1:定义转化法解题步骤根据圆锥曲线的定义列方程;将最值问题转化为距离问题求解适用情况此法为求解最值问题的常用方法,多数题可以用.【例1】已知点F是双曲线1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|PA|的最小值为_解析如图所示,根据双曲线定义|PF|PF|4,即|PF|4|PF|.又|PA|PF|AF|5,将|PF|4|PF|代入,得|PA|PF|45,即|PA|PF|9,等号当且仅当A,P,F三点共线,即P为图中的点P0时成立,故|PF|PA|的最小值为9.故填9.答案9方法2:切线法解题步骤求与直线平行的圆锥曲线的切线;求出两平行线的距离即为所求的最值适用情况当所求的最值是圆锥曲线上的点到某条直线的距离的最值时用此法.【例2】求椭圆y21上的点到直线yx2的距离的最大值和最小值,并求取得最值时椭圆上点的坐标解设椭圆的切线方程为yxb,代入椭圆方程,得3x24bx2b220.由(4b)243(2b22)0,得b.当b时,直线yx与yx2的距离d1,将b代入方程3x24bx2b220,解得x,此时y,即椭圆上的点到直线yx2的距离最小,最小值是;当b时,直线yx到直线yx2的距离d2,将b代入方程3x24bx2b220,解得x,此时y,即椭圆上的点到直线yx2的距离最大,最大值是.方法3:参数法解题步骤 选取合适的参数表示曲线上点的坐标;求解关于这个参数的函数最值适用情况可以用参数表示某个曲线并求得最值的问题.【例3】在平面直角坐标系xOy中,点P(x,y)是椭圆y21上的一个动点,则Sxy的最大值为_解析因为椭圆y21的参数方程为(为参数)故可设动点P的坐标为(cos ,sin ),其中02.因此Sxycos sin 22sin,所以,当时,S取最大值2.故填2.答案2方法4:基本不等式法解题步骤将最值用变量表示利用基本不等式求得表达式的最值适用情况最值问题中的多数问题可用此法.【例4】设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线ykx(k0)与椭圆相交于E,F两点,求四边形AEBF面积的最大值解依题设得椭圆的方程为y21.直线AB,EF的方程分别为x2y2,ykx(k0)设E(x1,kx1),F(x2,kx2),其中x1x2,且x1,x2满足方程(14k2)x24,故x2x1.根据点到直线的距离公式和式,得点E,F到AB的距离分别为h1,h2,又|AB|,所以四边形AEBF的面积为S|AB|(h1h2)22,当2k1,即k时,取等号所以四边形AEBF面积的最大值为2.二、圆锥曲线的范围问题【考情快递】 圆锥曲线中的范围问题是高考中的常见考点,一般出选择题、填空题方法1:曲线几何性质法解题步骤由几何性质建立关系式;化简关系式求解适用情况利用定义求解圆锥曲线的问题.【例1】已知双曲线1(a0,b0)的左,右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|4|PF2|,则此双曲线的离心率e的取值范围是_解析根据双曲线定义|PF1|PF2|2a,设|PF2|r,则|PF1|4r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司班组户外活动方案
- 公司立flag活动方案
- 公司清明工会活动方案
- 公司活动中心策划方案
- 公司猜盲盒活动方案
- 公司组织跑步活动方案
- 公司新年服装定制活动方案
- 公司服装大赛活动方案
- 公司组内活动策划方案
- 2025年运动医学与运动训练课程考试试题及答案
- 中医头部刮痧技术
- 江苏省南通市海安市2023-2024学年七年级下学期期末数学试卷(含答案详解)
- DL∕T 2602-2023 电力直流电源系统保护电器选用与试验导则
- 河南省许昌市2023-2024学年三年级下学期期末质量检测语文试卷
- 2024年全国“红旗杯”班组长大赛(复赛)备考试题库(简答、案例分析题)
- 全国住房城乡建设行业职业技能大赛各赛项技术文件 C1-建筑信息模型技术员LS技术文件
- 北京大学2024年强基计划笔试数学试题(解析)
- 畜禽屠宰企业兽医卫生检验人员考试试题
- 医疗废物污水培训课件
- 设备维保的预防性维修与预防性管理
- 2022-2023学年湖北省黄冈市武穴市七年级(下)期末历史试卷(含解析)
评论
0/150
提交评论