




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考20140830二次函数1、,若关于x 的不等式的解集中的整数恰有3个,则(A) (B) (C) (D)2、已知a、h、k为三数,且二次函数ya(xh)2k在坐标平面上的图形通过(0,5)、(10,8)两点若a0,0h10,则h之值可能为下列何者?()A1B3C5D73、“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”请根据你对这句话的理解,解决下面问题:若m、n(mn)是关于x的方程1(xa)(xb)=0的两根,且ab,则a、b、m、n的大小关系是()AmabnBamnbCambnDmanb4、若是方程(xa)(xb)= 1(ab)的两个根,则实数x1,x2,a,b的大小关系为( )Ax1x2ab Bx1ax2b Cx1abx2 Dax1bx25、已知一元二次方程的一根为,在二次函数的图象上有三点、,、的大小关系是 ( ) A. B. C. D. 6、如果函数y=(a1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是 7、二次函数的图象如图,对称轴为若关于的一元二次方程(为实数)在的范围内有解,则t的取值范围是( )1xy4A B C D8、如图是二次函数y=ax2+bx+c(a0)图象的一部分,x=1是对称轴,有下列判断:b2a=0;4a2b+c0;ab+c=9a;若(3,y1),(4,y2)是抛物线上两点,则y1y2,其中正确的是()ABCD9、设抛物线y=ax2+bx+c(a0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为 10、如图1,已知正方形ABCD的边长为1,点E在边BC上,若AEF=90,且EF交正方形外角的平分线CF于点F(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合)AE=EF是否总成立?请给出证明;在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=x2+x+1上,求此时点F的坐标11、如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m0),D为边AB的中点,一抛物线l经过点A、D及点M(1,1m)(1)求抛物线l的解析式(用含m的式子表示);(2)把OAD沿直线OD折叠后点A落在点A处,连接OA并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标来源:中&教*网中12、如图,抛物线y=x2x9与x轴交于A、B两点,与y轴交于点C,连接BC、AC(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D设AE的长为m,ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)(21世纪13、在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内)连接 OP,过点0作OP的垂线交抛物线于另一点Q连接PQ,交y轴于点M作PA丄x轴于点A,QB丄x轴于点B设点P的横坐标为m(1)如图1,当m=时,求线段OP的长和tanPOM的值;在y轴上找一点C,使OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E用含m的代数式表示点Q的坐标;求证:四边形ODME是矩形(21世纪教育网版权所有)14、如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0)(1)求a的值和抛物线的顶点坐标;(2)分别连接AC、BC在x轴下方抛物线上求一点M,使AMC与ABC的面积相等;(3)设N是抛物线对称轴上的一个动点,d=|ANCN|探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由15、如图,在平面直角坐标系中有一矩形ABCO(0为原点),点A、C分别在x轴、y轴上,且C点坐标为(0 , 6),将BCD沿BD拆叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE拆叠,恰好使点A落在BD边的F点上(1)求BC的长,并求拆痕BD所在直线的函数解析式;(2)过点F作FGx轴,垂足为G,FG的中点为H,若抛物线经过B、H、D三点,求抛物线解析式;(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过P作PNBC,分别交BC和BD于点N、M,是否存在这样的点P,使,如果存在,求出点P的坐标;如果不存在,请说明理由16、如图,在平面直角坐标系中,抛物线y=经过点A(,0)和点B(1,),与x轴的另一个交点C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且BAD=DAC,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.判断四边形OAEB的形状,并说明理由;点F是OB的中点,点M是直线BD上的一个动点,且点M与点B不重合,当BMF=MFO时,请直接写出线段BM的长.yxOACBF17、如图,矩形OABC的顶点A(2,0)、C(0,2)将矩形OABC绕点O逆时针旋转30得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为: ;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设PQH的面积为s,当时,确定点Q的横坐标的取值范围18、如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内AEy轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD设线段AE的长为m,BED的面积为S(1)当m=时,求S的值(2)求S关于m(m2)的函数解析式(3)若S=时,求的值;当m2时,设=k,猜想k与m的数量关系并证明19、如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4)点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B连接EC,AC点P,Q为动点,设运动时间为t秒(1)填空:点A坐标为 ;抛物线的解析式为 (2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动当t为何值时,PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PFAB,交AC于点F,过点F作FGAD于点G,交抛物线于点Q,连接AQ,CQ当t为何值时,ACQ的面积最大?最大值是多少?20、如图1,矩形ABCD的边AD在y轴上,抛物线y=x24x+3经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上(1)请直接写出下列各点的坐标:A ,B ,C ,D ;(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2当线段PH=2GH时,求点P的坐标;当点P在直线BD下方时,点K在直线BD上,且满足KPHAEF,求KPH面积的最大值21、正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c(1)填空:AOB BMC(不需证明);用含t的代数式表示A点纵坐标:A(0, );(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2,顶点随着的增大向上移动时,求t的取值范围22、如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(4,0),B(1,0)两点(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DFx轴于点H,交QC于点F请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由23、如图,在平面直角坐标中,点O为坐标原点,直线y=x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=x+4交于另一点B,且点B的横坐标为1第2题图(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PMOB交第一象限内的抛物线于点M,过点M作MCx轴于点C,交AB于点N,过点P作PFMC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当SACN=SPMN时,连接ON,点Q在线段BP上,过点Q作QRMN交ON于点R,连接MQ、BR,当MQRBRN=45时,求点R的坐标24、已知:如图,在四边形OABC中,ABOC,BCx轴于点C,A(1,1),B(3,1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0t2),OPQ与四边形OABC重叠部分的面积为S(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标(2)用含t的代数式表示点P、点Q的坐标;(3)如果将OPQ绕着点P按逆时针方向旋转90,是否存在t,使得OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式25、如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C已知实数m、n(mn)分别是方程x22x3=0的两根(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD当OPC为等腰三角形时,求点P的坐标;求BOD 面积的最大值,并写出此时点D的坐标26、如图,把两个全等的RtAOB和RtCOD分别置于平面直角坐标系中,使直角边OB、OD在x轴上已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F抛物线y=ax2+bx+c经过O、A、C三点(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由(3)若AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),AOB在平移过程中与COD重叠部分面积记为S试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由27、已知:直线l:y=2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,1),(2,0)(1)求该抛物线的解析式;(2)如图,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ(3)请你参考(2)中结论解决下列问题:(i)如图,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ONOM(ii)已知:如图,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由28、如图,ABCD的顶点O在原点,顶点A、C在反比例函数()的图象上,若A点横坐标为2,B点的横坐标为3,且四边形OABC的面积为4,则的值为 .一块草地 一间学校 一张荷叶 一个肚子 一个菜园8、生字“小魔术”(P111):加一笔:日(白)(田)(目)(电)(旧)(由)(旦)亮晶晶的眼睛 绿油油的荷叶 多彩的季节 金黄的稻子( 平翘舌、 前后鼻、 二三声调 )chng( 长短 ) yu(音乐) zh?(只有) kng(天空)29、如图,OABC中顶点A在轴负半轴上,B、C在第二象限,对角线交于点D,若C、D两点在反比例函数的图象上,且OABC的面积等于12,则的值是_短长 前后 明暗 男女 升降有无 对错 热冷 暖冷 弯直朋友=伙伴 仿佛=好像 喜欢=喜爱30、如图,在平面直角坐标系中,直线与轴、轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿轴正方向平移个单位长度后,点C恰好也落在此双曲线上,则的值是 .红红的太阳像火球。 闪闪的星星像眼睛 。火红火红的太阳(花儿) 金黄金黄的落叶(麦田、稻田、油菜花)31、已知关于x的方程x2(k+1)x+k2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青原区2024小升初数学试卷
- 养老中心建设项目运营方案
- 七年级53数学试卷
- 矿山生产管理方案
- 曲靖一中所有数学试卷
- 妇幼保健院信息化平台建设方案
- 养鸭场创新技术引进与应用方案
- 龙岩百校联考数学试卷
- 马鞍山单招数学试卷
- 难度系数0.7数学试卷
- 墙体绘画施工合同(2025版)
- 儿科护理实习出科理论考试试题及答案
- 婴幼儿心理健康发展指南
- 数据开放共享管理办法
- 2025年安徽省合肥市庐江县柯坦镇葛庙小学小升初数学试卷
- 井下作业设计管理办法
- DB54-T 0481-2025 西藏地区220kV和110kV变压器中性点 过电压间隙保护技术规范
- Welcome Unit Period 3 Discovering Useful Structures(教学设计)英语人教版2019必修第一册
- 销售资源分配管理办法
- 腾讯内部讲师管理办法
- 厨房水电气安全检查表
评论
0/150
提交评论