苏科八下表格教案12.3等可能条件下的概率(二)--建湖县沿河初级中学.doc_第1页
苏科八下表格教案12.3等可能条件下的概率(二)--建湖县沿河初级中学.doc_第2页
苏科八下表格教案12.3等可能条件下的概率(二)--建湖县沿河初级中学.doc_第3页
苏科八下表格教案12.3等可能条件下的概率(二)--建湖县沿河初级中学.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12.3等可能条件下的概率(二)一、设计思路本节是在学习了等可能条件下的概率(一)的基础上进一步学习的,本节课通过自由转动的转盘的实验,让学生探索、思考、讨论、发现可化为古典概型的几何概型的特点是:1、试验结果有无限个2、每一个试验结果出现的等可能性。重点突破的是有些几何概型为什么能转化为古典概型。并通过进一步实验理解可化为古典概型的几何概型中随机事件的概率大小与随机事件所在区域形状、位置无关,只与区域面积的大小有关。另外对例题教学进行了延伸变式训练,用来巩固等可能条件下的概率(一)有关知识。设计关键是由可转化为古典概型的几何概型,如何转化为古典概型及几何概型问题求概率与什么要素有关。二、目标设计1、在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型。2、进一步理解等可能事件的意义,了解等可能条件下的概率(二)的两上特点。3、能把等可能条件下的概率(二)转化为等可能条件下的概率(一),能进行简单的计算,并体会转化思想。4、在具体情境中,感受到一类事件发生的概率的大小与面积大小有关。三、活动设计活动内容师生互动思考与安排情境1:出示一个带指针的转盘,任意转动这个转盘,如果在某个时刻观察指针的位置。问题1:这时所有可能结果有多少个?为什么?问题2:每次观察有几个结果?有无第二个结果?问题3:每个结果出现的机会是均等的吗?说明:根据学生的回答,适时揭示等可能条件下的概率(二)的两个特点:1、试验结果有无限个。2、每一个试验结果出现的等可能性。81情境2:出示一个带指针的转盘,这个转盘被分成8个面积相等的扇形,并标上1、2、38,若每个扇形面积为单位1,转动转盘,转盘的指针的位置在不断的改变。726354问题1:在转动的过程中当正好转了一周时指针指向每一个扇形区域机会均等吗?那么指针指向每一个扇形区域是等可能性吗?问题2:怎样求指针指向每一个扇形区域的概率?它们的概率分别是多少?问题3:在转动的过程中,当正好转了两周时呢?当正好转了n周呢?当无限周呢?说明:1、在问题1中让学生讨论得出求概率的方法:指针指向某个区域面积整个转盘面积。让学生感知概率与指针经过的区域面积大小和整个转盘区域面积大小有关。但由于转盘区域面积一定。所以只与指针的指向区域面积有关,指针指向区域越大则概率越大。2、由本情境让学生自主探索,归纳出不论转多少周,指针指向每个不同号码的扇形区域的概率是相等的,且概率大小与转的周数无关,这样可把无限周问题转化为一周来解决,把无限事件转化为有限事件来处理,进而把这种类型的几何概型转化为古典概型的问题。 情境3:(P205页,书图12-3)2个可以自由转动的转盘,每个转盘被分成8个相等的扇形,任意转动每个转盘。 蓝红蓝蓝蓝红红红红红 红蓝蓝蓝红蓝问题1:本题可化为等可能性概率(一)的问题吗?问题2:第一个转盘转一周时,试验结果有几个,其中有几个结果指向红色区域?概率是多少?问题3:用同样的方法研究第二个转盘,则第二个转盘指向红色区域的概率是多少? 问题4:哪一个转盘指向红色区域概率大?你认为概率大小与什么 因素有直接关系?问题5:根据正面求概率的方法若要改变这两个转盘指针指向红色区域的概率,需要改变什么?问题6:若把转盘变成正方形其余不变,结果是一样吗?若每个转盘中红色扇形的个数不变,但位置变化一下,结果还是一样吗?说明:1、通过问题4、5进一步使学生理解概率的大小是由事件发生的区域面积大小决定的。2、通过问题6的探索使学生理解几何概的概率大小与随机事件所在的区域形状、位置无关。师生共同小结:几何概率大小与_、_无关,只与_有关。四、例题设计:例1:某商场为了吸引顾客,开展有奖销售活动,设立了一个可以自由转动的转盘,转盘等分为16份,其中红色1份、蓝色2份、黄色4份、白色9份,商场规定:顾客每购满1000元的商品,就可获得一次转动转盘的机会,转盘停止时,指针指向红、蓝、黄区域,顾客可分别获得1000元、200元、100元的礼品,某顾客购物1400元,他获得礼品的概率是多少?他分别获得1000元、200元、100元礼品的概率是多少?说明:1、首先让学生说出这位顾客有无获的一次转动转盘的机会?为什么?2、这个问题把几何概型转化为古典概型后在试验过程中共有多少个结果?获得礼品的结果有几次?怎样求获得礼品的概率?3、用同样的方法可求其余的概率。4、延伸:若某顾客购满2100元的商品,求获得礼品的概率是多少?两次同时获得1000元礼品的概率是多少?例2:在4m 远外向地毯扔沙包,地毯中每一块小正方形除颜色外完全相同,假定沙包击中每一块小正方形是等可能的,扔沙包次,击中红色区域的概率多大?问题1:这个问题可转化为等可能条件下的概率(一)吗?问题2:在试验过程中,这些正方形除颜色外都相同,每扔一次沙包一次击中每一块小正方形的可能性都相同吗?问题3:在试验过程中每扔一次沙包所有可能发生的结果有多少个?击中红色区域的可能性结果有几个?概率是多少?延伸:若扔沙包2次,分别击中红、白的概率是多少?若扔沙包3次分别击中3种不同颜色区域的概率有多大?动手设计:设计一个转盘,使得指针指向红色区域的概率为1/2,指针指向黄色区域的概率为1/4,指针指向蓝色区域的概率为1/4。说明:以上例题研究的是由面积大小求概率,而本题正好相反,由概率到面积,引导学生通过探索得出结论:若指针指向某颜色区域的概率为n/m,那么该颜色区域面积占整个转盘面积的n/m。反馈练习:P课本207页练习1、2题。补充:如图中有四个可能转的转盘,每个转盘被分为若干等分,转动转盘,当转盘停止后,指针指向白色区域概率相同的是( ) A、转盘1与转盘3 B、转盘2与转盘3C、转盘3与转盘4 D、转盘1与转盘4红红红白白白红红红白红红蓝红红红白白黄白红蓝白红蓝红红黄五、拓展设计1、如图所示的两个转盘中,当转盘停止转动时,指针若在每一个数上的机会相等,那么指针同时落在奇数上的概率是多少?1221366345542、两次连续转动如图所示的转盘求P(指针两次都指向红色区域)求P(指针两次都指向不同颜色区域)红蓝红求P(指针两次指向相同颜色区域) (图2)3、盒中装有完全相同的球,分别标有“A”、“B”、“C”,从盒中随意摸出一球,并自由转动转盘(转盘被分成三个面积相等的扇形),小刚和小明用它们做游戏,并设定如果所摸出的球上字母与转盘停止后指针对准的字母相同,则小明获得1分,如果不同,则小刚获得1分。1、你认为这个游戏公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论