二次函数与一元二次方程应用题综合专题及典例剖析.doc_第1页
二次函数与一元二次方程应用题综合专题及典例剖析.doc_第2页
二次函数与一元二次方程应用题综合专题及典例剖析.doc_第3页
二次函数与一元二次方程应用题综合专题及典例剖析.doc_第4页
二次函数与一元二次方程应用题综合专题及典例剖析.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

个性化辅导教案教学内容本次课教学安排:1、 掌握一元二次方程应用题的步骤与方法2、 掌握二次函数应用题的步骤与方法内容详解: 二次函数与一元二次方程的应用题专练 一、一元二次方程的应用题1(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子开发商还给予以下两种优惠方案以供选择:打9.8折销售;不打折,送两年物业管理费物业管理费是每平方米每月1.5元请问哪种方案更优惠?2(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆 (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆ABCD16米草坪第21题图3.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个矩形草坪(1)围城面积为120平方米的矩形草坪ABCD求该矩形草坪BC边的长(2)设草坪BC边长为X 与矩形ABCD面积为S 存在的函数关系式(并写出自变量X的取值范围)(3)当矩形BC为多少米时 矩形的面积有最大值,最大值是多少 4.(2010山东烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井大的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?5.(2010浙江温州)23(本题l2分)在日常生活中,我们经常有目的地收集数据,分析数据,作出预测 (1)下图是小芳家2009年全年月用电量的条形统计图。 根据图中提供的信息,回答下列问题: 2009年小芳家月用电量最小的是 月,四个季度中用电量最大的是第 季度; 求2009年5月至6月用电量的月增长率;(2)今年小芳家添置了新电器已知今年5月份的用电量是120千瓦时,根据2009年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?6.(2011山东日照,20,8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房7.益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(35010a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?8.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.图1如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.如果人数不超过25人,人均旅游费用为1000元.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?二、二次函数的应用题1.(03吉林)如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计). 货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2. (03辽宁)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).(1)由已知图象上的三点坐标,求累积利润s(万元)与销售时间t(月)之间的函数关系式;(2)求截止到几月累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?.一元二次方程的应用(一)传播问题(比赛问题)1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?2.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?(二)平均增长(下降)率问题 变化前数量(1x)n变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率。2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少?3.某种商品,原价50元,受金融危机影响,1月份降价10,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。(三)商品销售问题售价进价=利润 一件商品的利润销售量=总利润 单价销售量=销售额1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价3元,日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2.服装柜在销售中发现某品牌童装平均每天可售出件,每件盈利元。为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价元,那么平均每天就可多售出件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?3.西瓜经营户以元千克的价格购进一批小型西瓜,以元千克的价格出售,每天可售出千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外,每天的房租等固定成本共元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?4.某商店购进一种商品,进价30元试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?(四)面积问题 判断清楚要设什么是关键1、 一个直角三角形的两条直角边的和是14cm,面积是24cm2,求两条直角边的长。2.一个直角三角形的两条直角边相差5,面积是72,求斜边的长。3.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80,求所截去的小正方形的边长。行程问题:1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇。问甲、乙的速度各是多少?2、甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米工程问题:1、某公司需在一个月(31天)内完成新建办公楼的装修工程如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成(1)求甲、乙两工程队单独完成此项工程所需的天数(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元在规定时间内:A请甲队单独完成此项工程出B请乙队单独完成此项工程;C请甲、乙两队合作完成此项工程以上三种方案哪一种花钱最少?二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台 (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?4体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线的一部分,根据关系式回答: 该同学的出手最大高度是多少? 铅球在运行过程中离地面的最大高度是多少? 该同学的成绩是多少?3、张大爷要围成一个矩形花圃花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成围成的花圃是如图所示的矩形ABCD设AB边的长为x米矩形ABCD的面积为S平方米 (1)求S与x之间的函数关系式(不要求写出自变量x的取值范围) (2)当x为何值时,S有最大值?并求出最大值5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围8、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示(1)试确定的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?2524y2(元)x(月)1 2 3 4 5 6 7 8 9 10 11 12 第8题图O 二次函数应用题答案1、解:(1) (130-100)80=2400(元)(2)设应将售价定为元,则销售利润 .当时,有最大值2500. 应将售价定为125元,最大销售利润是2500元. 2、解:(1),即(2)由题意,得整理,得得要使百姓得到实惠,取所以,每台冰箱应降价200元(3)对于,当时,所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元3、4、解:(1)设与的函数关系为,根据题意,得解得所以,设月销售金额为万元,则化简,得,所以,当时,取得最大值,最大值为10125答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元(2)去年12月份每台的售价为(元),去年12月份的销售量为(万台),根据题意,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论