




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
17.1.2反比例函数的图像和性质景县第二中学 司建平学情分析:学生在前面已经学习了如何用描点法画一次(正比例)函数的图像,这为本节学习奠定了一定的基础通过本小节的学习,要使学生能够描点画出反比例函数的图像,并能结合图像分析反比例函数的性质。教学目标:一、情感态度与价值观1.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法。2.由图象的画法和分析,体验数学活动中的探索性和创造性,感受数学美,并通过图象的直观教学激发学习兴趣。二、过程与方法1.通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质2.培养学生的探究、归纳及概括的能力。三、知识与技能1. 体会并了解反比例函数的图象的意义,理解反比例函数的性质2. 能描点画出反比例函数的图象教学重点、难点:1. 画反比例函数的图像,理解反比例函数的性质2. 画反比例函数的图像,归纳反比例函数的性质教学资源:课件、三角板教学过程:教学活动1:复习提问1.什么是反比例函数?它的取值范围是什么?2.反比例函数的图像是什么?教学活动2:新课例:画出反比例函数和的图像。思考:1、作函数图象的一般步骤是什么?2、列表时要注意些什么?取值要注意什么?3、比较两个函数的图像,它们有何异同?4、由此你能得到些什么结论?5、图像在延伸后,会不会与两坐标轴相交?一、观察探究,形成新知以画出反比例函数的图象为例,教师引导学生经历列表、描点、连线的过程(1)列表:-6-5-4-3-2-1123456列表时,关注学生是否注意到自变量的取值应使函数有意义(即),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征;(2)描点:一般情况下,所选的点越多图象越精确;(3)连线:引导学生用平滑的曲线,按照自变量从小到大的顺序连接各点,注意图象末端的延伸和延伸的趋势,得到反比例函数的图象师生活动:教师引导学生列表、描点、作图;展示学生作品;教师板书示范,并通过课件演示反比例函数图象的生成过程,给出双曲线的名称,并渗透它的形态特征.【设计意图】图象是直观地描述和研究函数的重要工具,通过经历用描点法画出反比例函数图象的基本步骤,可以使学生对反比例函数先有一个初步的感性认识问题:请观察反比例函数的图象,有哪些特征?师生活动:教师引导学生观察,类比正比例函数,归纳说出反比例函数图象的形状、位置、变化趋势及其函数的增减性【设计意图】通过类比正比例函数,引导学生观察图象的形状、位置、变化趋势,感受“形”的特征,感受自变量与函数值之间变化与对应的关系,使学生对反比例函数的图象和性质形成初步的印象问题:是不是所有的反比例函数的图象都具有这样的特征呢?以讨论反比例函数为例在教师引导下,学生借鉴画反比例函数的图象的经验,自主画出反比例函数的图象,教师巡视指导作图完成后,学生展示作品,并说出该函数图象的特征,教师适时点评【设计意图】通过再次画出反比例函数的图象,使学生巩固前面已获得的作图经验,提高学生利用描点法画出函数图象的能力同时,在总结说出反比例函数的图象特征的过程中,使学生增强对图象的观察、感知、分析、概括的能力,以及经历通过画出函数图象,并利用图形研究函数性质的过程问题:反比例函数与的图象有什么共同特征?有什么不同点?是由什么决定的?师生活动:教师启发学生对比、思考,组织学生讨论,引导学生关注反比例系数“”的作用【设计意图】学生通过观察比较,总结这两个反比例函数图象的特征,在活动中,让学生自己去观察、发现、总结,实现学生主动参与,探究新知的目的问题:当取不同的值,上述结论是否适用于所有的反比例函数?教师演示课件,赋予不同的值,观察所得到的不同的反比例函数图象的特征,引导学生归纳“变化中的规律性”然后,从解析式的角度,引导学生分析上述结论的合理性【设计意图】通过计算机动态演示,验证猜想,使学生经历从特殊到一般的过程,加强对反比例函数图象“特征”和函数“特性”以及它们之间的相互转化关系的认识问题:总结正比例函数与反比例函数()图象的特征和性质,并进行对比。可以从如下方面考虑:两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?两种函数中的取值范围有何不同?常数的符号改变对两种函数图象所处象限的影响如何?【设计意图】通过归纳,培养学生抽象概括能力二、巩固提高,应用新知课堂练习: 1下列图象中,可以是反比例函数的图象的是( )2已知反比例函数的图象如图所示,则 0, 且在图象的每一支上,值随的增大而 3. 已知反比例函数的图象过点(2,1),则它的图象在 象限,且 04. 若反比例函数()的图象上有两点(,),(,),且,则的值是( )(A)正数(B)负数(C)非正数(D)非负数【设计意图】通过一系列的练习,可以实现知识向能力的转化三、归纳反思,深化新知问题8:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对反比例函数的图象和性质有一个较为整体、全面认识,同时,使学生养成良好的学习习惯布置作业:(1)基础达标:教材中练习的第1、2题,习题的第3题;(2)反思提升:将反比例函数(为常数,)与正比例函数(为常数,)进行对比,可以从如下方面考虑:两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?两种函数中的取值范围有何不同?常数的符号改变对两种函数图象所处象限的影响如何?四、目标检测设计1反比例函数的图象在( )(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限2在同一直角坐标系中,函数与的图象大致是( )3写出一个反比例函数,使得该反比例函数的图象在第一、三象限,该函数可以是 ;若点在该函数的图象上,则点的坐标可以是 (分别写出一个即可)4若双曲线,当时,随的增大而增大,则的取值范围是 5已知反比例函数,(1)填写表格中相应的的值:-6-5-4-3-2-1123456(2)根据表中的数据,描点画出函数的图象6某住宅小区要种植一个面积是1000 m2的矩形草坪,设草坪的长为(单位:m),宽为(单位:m),(1)与之间有怎样的函数关系;(2)画出该函数的图象;(3)若限定草坪的宽大于10 m且不超过20 m,求草坪的长的范围课后反思:反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?(3) 两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 展会委托搭建合同范本
- 民用住宅购房合同范本
- 社区志愿者安全知识培训课件
- 员工代理业务合同范本
- 社区应急知识培训课件计划
- 物业托管经营合同范本
- 新开发旅游合同范本
- 公司 信托 贷款合同范本
- 技术指导合同范本
- 车辆维修投标合同范本
- 珠宝品牌价值构建-深度研究
- 预备役退出申请书
- 三农村集体经济组织内部审计操作手册
- 2025年1月浙江省高考地理试卷(含答案)
- 锂电池项目经济效益及投资价值分析
- 2025年中国维生素C咀嚼片市场供需格局及未来发展趋势报告
- 广东省汕头市金平区2021-2022学年八年级下学期期末英语卷
- 物流行业固废处理方案
- 测绘项目投标技术文件范例
- 项目5 5.1 植物的光合作用(1)(课件)-《植物生产与环境》(高教版第4版)
- 《蒙牛乳业集团财务共享服务中心优化研究》
评论
0/150
提交评论