




免费预览已结束,剩余14页可下载查看
VIP免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题复习精品讲义第十二章轴对称本章小结小结1 本章概述 本章主要从生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用在此基础上,利用轴对称探索等腰三角形的性质及其判定方法,进一步学习等边三角形的性质和判定 轴对称是现实生活中广泛存在的一种现象,是密切数学知识与现实联系的重要内容本章内容是上一章内容的继续又是后面学习四边形、圆的基础,所以学好本节知识至关重要本节中涉及轴对称、等腰三角形、等边三角形、垂直平分线等重要概念,涉及等腰三角形“等边对等角”、“三线合一”等重要性质,在学习时应特别注意小结2 本章学习重难点 【本章重点】 1轴对称的概念和性质和判定 2等腰(或等边)三角形的性质和判定 【本章难点】1利用轴对称的性质进行图案设计 2书写推理证明过程小结3 学法指导 1注意联系实际,通过观察、动手操作等直观方式掌握轴对称及等腰三角形的性质和判定,利用轴对称的观点解释生活中的有关现象,设计图案选择最佳方案等,体现知识的应用,体现具体抽象具体的过程 2注意知识间的联系图形的轴对称变换、图形与坐标、图形的证明在本章都有涉及,注意各部分知识之间的联系,把所学知识纳入已有的知识体系3注意体会转化思想、类比思想、分类讨论思想在本章学习中的应用知识网络结构图轴对称轴对称图形(1)定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形这条直线就是它的对称轴两个图形成轴对称(或一个图形是轴对称图形),则对应线段(对折后重合的线段)相等;对应角(对折后重合的角)相等对称轴垂直平分连接对应点的线段(2)性质(3)垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的距离相等判定:与一条线段两个端点距离相等的点在这条线段的垂直平分线上作轴对称图形用坐标表示轴对称轴对称变换:由一个平面图形得到它的轴对称图形,叫做轴对称变换p(x,y)关于x轴的对称点的坐标为p(x,y)p(x,y)关于y轴的对称点的坐标为p(x,y)性质等腰三角形定义:有两条边相等的三角形叫做等腰三角形(1)等腰三角形的两个底角相等(等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一)专题总结及应用一、知识性专题专题1轴对称及轴对称图形 【专题解读】此部分内容是近几年中考中常见的题型,也是新题型之一,解题的依据主要是轴对称及轴对称的性质例1 如图12112所示的是小方画的正方形风筝图案,她以图中的对角线所在直线为对称轴,在对角线的下方画一个三角形,使得新的风筝图案成为轴对称图形,若如图12113所示的图形中有一图形为此轴对称图形,则此图为 ( ) 分析本题主要考查轴对称图形的性质,即对应点连线被对称轴垂直平分,只有c为轴对称图形故选c 规律方法判断某图形是否为轴对称图形(或两个图形是否成轴对称),关键是能否找到一条直线可将这个图形(或两个图形)沿着这条直线对折,使对折后的两部分(或两个图形)重合 专题2利用轴对称变换作轴对称变换后的图形及设计方案 【专题解读】 利用轴对称变换设计精美图案,当对称轴改变方向时,原图形的对称图形也改变方向,一个图形经过若干次轴对称变换,再结合平移、旋转等就可以得到非常美丽的图案 例2如图12114所示,给出了一个图案的一半,其中的虚线就是这个图案的对称轴,请画出这个图案的另一半 解:如图12114所示 【解题策略】 先作出特殊点的对称点,然后连接即可 专题3等腰三角形的性质和判定 【专题解读】等腰三角形的性质和判定可以用来证明角相等、线段相等以及线段垂直,这是几何证明中最重要的知识之一,它经常与其他几何知识(如四边形、圆等)综合在一起考查 例3如图12115所示,abac,e,d分别在ab,ac上,bd和ce相交于点f,且abdace求证bfcf 分析本题综合考查等腰三角形的性质和判定由于abac,所以作辅助线bc,则可以构造等腰三角形,从而利用等腰三角形的性质解决问题 证明:连接bc, abac,acbabc(等边对等角) 又aceabd,fcbfbc bfcf(等角对等边) 【解题策略】 本题解题时灵活运用了等腰三角形的性质和判定,也可以连辅助线af,来证明bfcf,用这个方法证明要用到三角形全等,比较麻烦 专题4 等边三角形的性质和判定 【专题解读】等边三角形是一个很特殊的三角形,它的三边都相等,三个角都是60,正是由于它的特殊性,因此在很多的几何证明题中都会用到 例4如图12116所示,ad是abc的中线,adc60,bc4,若将adc沿直线ad折叠,则c点落在点e的位置上,求be的长 分析本题综合考查轴对称和等边三角形的判定和性质 解:由折叠得adeadc60,cdde 又bddc,debd adeadc60, bde180606060 bde为等边三角形 bebdbc2 【解题策略】本题运用了“有一个角是60的等腰三角形是等边三角形”这一判定方法 专题5 含30角的直角三角形的性质与等腰三角形的综合应用 【专题解读】 直角三角形中,30角所对的直角边等于斜边的一半,这条性质在实际生活中有着广泛的应用由角的特殊性,揭示了直角三角形中直角边和斜边的关系 例5如图12117所示,abc中,abac,bac120,adac交bc于点d求证be3ad 分析本题综合考查等腰三角形的性质和判定,以及直角三角形中30角所对的直角边是斜边的一半的性质 证明:abac,bc(等边对等角) 又bac120,bc30 adac,dac90 badbacdac1209030bbad bdad(等角对等边) 在rtadc中,c30,cd2ad bcbdcdad2ad3ad二、规律方法专题专题6正确作辅助线解决问题 【专题解读】 本章涉及等腰三角形的性质、角平分线及线段的垂直平分线的性质,做题时可通过添加适当的辅助线由全等等知识获得结论 例6如图12118所示,b90,adabbc,deac求证bfdc 证明:连接ae edac,ade90 又b90 在rtabe和rtade中, rtabertade(hl),beed abbc,bacc 又b90,bacc90 c45 edc90,cdec45 dedc,bedc 例7如图12119所示,在abc中,abac,在ab上取一点e,在ac的延长线上取一点f,使becf,ef交bc于g求证egfg 证明:过e作emac,交bc于点m, 则embacb,megf 又abac,bacb bemb,ebem 又becf,emfc 在meg和cfg中, megcfg(aas) egfg三、思想方法专题 专题7分类讨论思想 【专题解读】本章涉及等腰三角形的边、角的计算,应通过题意探讨其可能存在的情况,运用相关知识一一讨论不难获得结论 例8已知等腰三角形一腰上的中线把这个三角形的周长分为13 cm和15 cm两部分,试求此等腰三角形的腰长和底边长 分析 这是一类常见的等腰三角形分类讨论的问题,解题时应注意到分为13 cm和15 cm两部分时的两种可能情形,进行分类讨论即可 解:如图12120所示,abac,d为ac的中点, 所以adcd, 由题意知或 解得abac,bc或abac10,bc8 即此等腰三角形的腰长与底边长分别为cm,cm或10 cm,8 cm 规律方法本题的分类讨论既可以说是来源于不同的图形也可以说是来源于题设中的“不明确”,解题过程应从题设中挖掘出类似的信息,以使解答完整 专题8数形结合思想 【专题解读】数形结合思想是比较常用的数学思想,在解有关三角形的问题时显得尤为重要 例9 (开放题) 如图12121所示,abc中,已知abac,要使adae,需添加的条件是 分析 从确定ade是等腰三角形着眼,若adeaed,可得adae,除此以外还可加adbaec或badcae或bdce故填adeaed或adb=aec或badcae或bdce(答案不唯一) 例10 (探究题)如图12122所示,线段op的一个端点o在直线a上,以op为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画几个?分析以op为一边画等腰三角形,要考虑op作腰和op作底边两种情况 解:(1)当op作等腰三角形的腰时,分o作顶点和p作顶点两种情况当o作顶点,op作腰时,则以o为圆心,op为半径画弧,与直线a交于m1,m2两点,则opm1和opm2都是等腰三角形;当p作顶点,po作腰时,则以p为圆心,po为半径画弧,交直线a于m3,则pom3为等腰三角形 (2)当op作等腰三角形的底边时,作op的垂直平分线交直线a于m4,则opm4为等腰三角形 所以这样的等腰三角形能画4个如图12123所示 例11 (动手操作题)如图12124所示,abc中,abac,a36,仿照图请你再用两种不同的方法,将abc分割成3个三角形,使每个三角形都是等腰三角形(作图工具不限,不写作法和证明,但要标出所分得的每个等腰三角形的内角的度数) 分析在abc中,abac,a36,所以bc72所以分割出的等腰三角形的底角或顶角为36,72,108,18,144,以这些度数为基础设计分割方案,便可得出符合条件的图形解:如图12124所示均符合要求2011中考真题精选1. (2011江苏淮安,2,3分)下列交通标志是轴对称图形的是( ) a、b、c、d、考点:轴对称图形。分析:根据轴对称图形的概念求解,只要寻找对称轴,图形两部分折叠后可重合,既是轴对称图形解答:解:a、不是轴对称图形; b、不是轴对称图形; c、不是轴对称图形; d、是轴对称图形故选:d点评:此题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2. (2011南通)下面的图形中,既是轴对称图形又是中心对称图形的是()a、b、c、d、考点:中心对称图形;轴对称图形。分析:结合轴对称图形与中心对称图形的定义进行分析解答:解:a项是中心对称图形,不是轴对称图形,故本项错误,b项为中心对称图形,不是轴对称图形,故本项错误,c项为中心对称图形,也是轴对称图形,故本项正确,d项为轴对称图形,不是中心对称图形,故本项错误故答案选择c点评:本题主要考察轴对称图象的定义和中心对称图形的定义,解题的关键是找到图形是否符合轴对称图形和中心对称图形的定义3. (2011江苏无锡,6,3分)一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是()ab cd考点:轴对称图形。专题:数形结合。分析:轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合解答:解:a、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故不符合题意;b、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故不符合题意;c、图象关于对角线所在的直线对称,有一条对称轴;故不符合题意;d、图象关于对角线所在的直线不对称;故符合题意;故选d点评:本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合4. (2011山西,6,2分)将一个矩形纸片依次按图(1)、图的方式对折,然后沿图(3)中的虚线裁剪,最后头将图(4)的纸再展开铺平,所得到的图案是( )(向上对折)图(1) 图(3) (向右对折)图(2) 图(4) (第6题) 考点:轴对称专题:操作题 图形变换分析:由图案的对称性进行想象,或动手操作一下都可解答:a点评:动手折一折,动脑想一想不难得出答案5. (2011四川广安,5,3分)下列几何图形:角 平行四边形 扇形 正方形,其中轴对称图形是( ) a b c d考点:轴对称图形专题:对称分析:根据轴对称图形的概念及所给出的图形的特点可知角,扇形,正方形是轴对称图形而平行四边形是中心对称图形解答:c点评:把一个图形沿着某一条直线对称,如果图形左右两边的部分能够完全重合,那么这个图形就是轴对称图形,解题时要注意记住初中阶段学过的哪些基本图形是轴对称图形6.(2011台湾4,4分)下列有一面国旗是轴对称图形,根据选项中的图形,判断此国旗为何()a、 b、c、d、考点:轴对称图形。专题:常规题型。分析:根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形这条直线叫做对称轴解答:解:a、不是轴对称图形,故本选项错误;b、不是轴对称图形,故本选项错误;c、不是轴对称图形,故本选项错误;d、是轴对称图形,故本选项正确故选d点评:本题考查轴对称图形,注意掌握轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合7. (2011台湾26,4分)如图1,将某四边形纸片abcd的ab向bc方向折过去(其中abbc),使得a点落在bc上,展开后出现折线bd,如图2将b点折向d,使得b、d两点重迭,如图3,展开后出现折线ce,如图4根据图4,判断下列关系何者正确?()a、adbcb、abcdc、adb=bdcd、adbbdc考点:翻折变换(折叠问题)。专题:操作型。分析:由a点落在bc上,折线为bd,根据折叠的性质得到abd=cbd,又b点折向d,使得b、d两点重迭,折线为ce,再根据折叠的性质得到cd=cb,然后转化为角相等,这样就有abd=cdb,根据平行线的判定定理即可得到b正确解答:解:a点落在bc上,折线为bd,abd=cbd,又b点折向d,使得b、d两点重迭,折线为ce,cd=cb,cbd=cdb,abd=cdb,abcd,即选项b正确故选b点评:本题考查了折叠的性质:折叠后重叠的两部分图形全等也考查了动手能力和空间想象能力8. (2011湖北荆州,2,3分)下列四个图案中,轴对称图形的个数是()a、1 b、2 c、3 d、4考点:轴对称图形分析:根据轴对称图形的定义1得出,图形沿一条直线对着,分成的两部分完全重合及是轴对称图形,分别判断得出即可解答:解:根据图象,以及轴对称图形的定义可得,第1,2,4个图形是轴对称图形,第3个是中心对称图形,故选:c点评:此题主要考查了轴对称图形的定义,根据定义判断出图形形状是解决问题的关键9.(2011柳州)在三角形、四边形、五边形、和正六边形中,是轴对称图形的是()a、三角形b、四边形c、五边形d、正六边形考点:轴对称图形。专题:几何图形问题。分析:关于某条直线对称的图形叫轴对称图形解答:解:只有正六边形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形故选d点评:本题考查了轴对称图形的知识,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形10. (2011郴州)观察下列图案,既是中心对称图形又是轴对称图形的是()a、b、c、d、考点:中心对称图形;轴对称图形。专题:几何图形问题。分析:根据轴对称图形与中心对称图形的概念求解解答:解:a、不是轴对称图形,不符合题意,故本选项错误;b、是轴对称图形,不是中心对称图形,不符合题意,故本选项错误;c、是轴对称图形,也是中心对称图形,符合题意,故本选项正确;d、是轴对称图形,不是中心对称图形,不符合题意,故本选项错误故选c点评:本题考查轴对称图形及中心对称图形的知识,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图形重合11. (2011山东青岛,4,3分)下列汽车标志中既是轴对称又是中心对称图形的是()abcd考点:轴对称图形;中心对称图形。分析:根据轴对称图形与中心对称图形的概念求解解答:解:a是轴对称图形,不是中心对称图形;b是轴对称图形,不是中心对称图形;c不是轴对称图形,也不是中心对称图形;d是中心对称图形,也是轴对称图形故选d点评:此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合12. (2011泰安,19,3分)如图,点o是矩形abcd的中心,e是ab上的点,沿ce折叠后,点b恰好与点o重合,若bc3,则折痕ce的长为()ab cd6考点:翻折变换(折叠问题);勾股定理。专题:探究型。分析:先根据图形翻折变换的性质求出ac的长,再由勾股定理及等腰三角形的判定定理即可得出结论解答:解:ced是ceb翻折而成,bccd,bede,o是矩形abcd的中心,oe是ac的垂直平分线,ac2bc236,aece,在rtabc中,ac2ab2bc2,即62ab232,解得ab3,在rtaoe中,设oex,则ae3x,ae2ao2oe2,即(3x)2(3)232,解得x,aeec32故选a点评:本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键13. (2011山东省潍坊, 4,3分)如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑得到新的图形(阴影部分),其中不是轴对称图形的是( )【考点】轴对称图形【分析】本题需先根据轴对称图形的有关概念沿某直线折叠后直线两旁的部分互相重合对每一个图形进行分析即可得出正确答案【解答】解:a沿某直线折叠,分成的两部分能互相重合它是轴对称图形b、沿某直线折叠,分成的两部分能互相重合它是轴对称图形c、绕某一点旋转180以后,能够与原图形重合它是轴对称图形d、根据轴对称定义它不是轴对称图形故选d【点评】本题主要考查了轴对称图形的有关概念,在解题时要注意轴对称图形的概念与实际相结合是本题的关键2011四川达州,2,3分)图中所示的几个图形是国际通用的交通标志其中不是轴对称图形的是()a、 b、c、 d、考点:轴对称图形。分析:根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形解答:解:a、b、d都是轴对称图形,而c不是轴对称图形故选c点评:本题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合14. (2011四川广安,5,3分)下列几何图形:角 平行四边形 扇形 正方形,其中轴对称图形是( ) a b c d考点:轴对称图形专题:对称分析:根据轴对称图形的概念及所给出的图形的特点可知角,扇形,正方形是轴对称图形而平行四边形是中心对称图形解答:c点评:把一个图形沿着某一条直线对称,如果图形左右两边的部分能够完全重合,那么这个图形就是轴对称图形,解题时要注意记住初中阶段学过的哪些基本图形是轴对称图形15. 2011四川泸州,11,2分)如图,在rtabc中,abc=90,c=60,ac=10,将bc向ba方向翻折过去,使点c落在ba上的点c,折痕为be,则ec的长度是()a. b.5 c.10 d.5+ 考点:翻折变换(折叠问题)分析:作edbc于d,可得含30的rtced及含45的直角三角形bed,设所求的ec为x,则cd=0.5x,bd=be= x,根据bc=5列式求值即可解答:解:作edbc于d,设所求的ec为x,则cd=x,bd=be=x,abc=90,c=60,ac=10,bc=accosc=5,cd+bd=5,ce=5,故选b点评:考查翻折变换问题;构造出含30及含45的直角三角形是解决本题的突破点16. 在下列几何图形中,一定是轴对称图形的有()a、1个 b、2个 c、3个 d、4个【答案】c【考点】轴对称图形【专题】几何图形问题【分析】根据轴对称图形的概念,分析各图形的特征求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形这条直线叫做对称轴【解答】解:扇形是轴对称图形,符合题意;等腰梯形是轴对称图形,符合题意;菱形是轴对称图形,符合题意;直角三角形不一定是轴对称图形,故不符合题意共3个轴对称图形故选c【点评】考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合17. 窗体底端12、如图在直角坐标系中,矩形abc0的边oa在x轴上,边0c在y轴上,点b的坐标为(1,3),将矩形沿对角线ac翻折,b点落在d点的位置,且ad交y轴于点e那么点d的坐标为()a、 b、 c、 d、 【答案】a【考点】翻折变换(折叠问题);坐标与图形性质【专题】计算题;综合题【分析】如图,过d作dfaf于f,根据折叠可以证明cdeaoe,然后利用全等三角形的性质得到oe=de,oa=cd=1,设oe=x,那么ce=3-x,de=x,利用勾股定理即可求出oe的长度,而利用已知条件可以证明aeoadf,而ad=ab=3,接着利用相似三角形的性质即可求出df、af的长度,也就求出了d的坐标【解答】解:如图,过d作dfaf于f,点b的坐标为(1,3),ao=1,ab=3,根据折叠可知:cd=oa,而d=aoe=90,dec=aeo,cdeaoe,oe=de,oa=cd=1,设oe=x,那么ce=3-x,de=x,在rtdce中,ce2=de2+cd2,(3-x)2=x2+12,x=,又dfaf,dfeo,aeoadf,而ad=ab=3,ae=ce=3-, ,即 ,df=,af=,of= -1= ,d的坐标为(- , )故选a【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题综合验收评估测试题 一、选择题(每小题3分,共30分)1如图12125所示的四个中文艺术字中,不是轴对称图形的是( )一 日 千 里a b c d图12 - 1252如图12126所示,把等腰直角三角形abc沿bd折叠,使点a落在边bc上的点e处下面结论错误的是 ( ) aabbe baddc cadce dadec3如图12127所示,直线cd是线段ab的垂直平分线,p为直线cd上的一点,已知线段pa5,则线段pb的长度为 ( ) a6 b5 c4 d34点p(3,5)关于x轴对称的点的坐标为 ( ) a(3,5) b(5,3) c(3,5) d(3,5)5如图12128所示,abc与abc关于直线,对称,且a78,c48,则b的度数为 ( ) a48 b54 c74 d786如图12129所示的是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在 ( ) aabc的三条中线的交点 babc的三边的中垂线的交点 cabc三条角平分线的交点 dabc三条高所在直线的交点7如图12130所示的是把一张长方形的纸沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,外面部分展开后的图形是图12131中的( )8如图12132所示,在abc中,abac,a36,bd,ce分别是abc,bcd的角平分线,则图中的等腰三角形有 ( ) a5个 b4个 c3个 d2个9如图12133所示,坐标平面内一点a(2,1),o为原点,p是x轴上的一个动点,如果以点p,o,a为顶点的三角形是等腰三角形,那么符合条件的动点p的个数为 ( ) a2 b3 c4 d5 10如图12134所示,a15,abbccddeef,则def等于 ( ) a90 b75 c70 d60 二、填空题(每小题3分,共30分)11等腰三角形abc的两边长为2和5则第三边长为 12如图12135所示,镜子中的号码实际是 13如图12136所示abc中,de垂直平分ac,交ab于e,a30,acb80,则bce 14从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角等于 15如图12137所示,将矩形纸片abcd折叠,使点d与点b重合,点c落在点c处,折痕为ef,若abe20,那么efc的度数为 度16若等腰三角形一腰上的高与底边的夹角为35则这个三角形的顶角为 17等边三角形是轴对称图形,它有 条对称轴18(1)若等腰三角形的一个内角等于130,则其余两个角分别为 (2)若等腰三角形的一个内角等于70,则其余两个角分别为 19如图12138所示,在abc中,c90,ad平分bac,交bc于点d,cd3,则点d到ab的距离为 20如图12139所示,在abc中,abac,a60,beac于e,延长bc到d,使cdce,连接de,若abc的周长是24,bea,则bde的周长是 三、解答题(每小题10分共60分)21如图12140所示,有分别过a,b两个加油站的公路l1,l2相交于点o,现准备在aob内建一个油库,要求油库的位置点p满足到a,b两个加油站的距离相等,而且p到两条公路l1,l2的距离也相等请用尺规作图作出点p(不写作法,保留作图痕迹) 22如图12141所示,bacabd (1)要使ocod,可以添加的条件为 或 ;(写出2个符合题意的条件即可)(2)请选择(1)中你所添加的一个条件证明ocod23如图12142所示,abc中,abac,e在ca的延长线上,aeaf,ad是bc边上的高,试判断ef与bc的位置关系,并说明理由24如图12143所示,abc中,点e在ac上,点n在bc上,在ab上找一点f,使enf的周长最小,并说明理由25如图12144所示,某船上午11时30分在a处观测海岛b在北偏东60方向,该船以每小时10海里的速度向正东方向航行,航行到c处时,再观测海岛b在北偏东30方向,又以同样的速度继续航行到d处,再观测海岛b在北偏西30方向,当轮船到达c处时恰好与海岛b相距20海里,请你确定轮船到达c处和d处的时间26如图12145所示,在abc中,abc2c,ad为bc边上的高,延长ab到e点,使bebd,过点d,e引直线交ac于点f,则有affc为什么?参考答案1c2b提示:由折叠知beda90,bd是abc的平分线,所以adde3b提示:由cd是ab的垂直平分线可知pbpa54d提示:两点关于x轴对称,则两点坐标的关系是:横坐标相同,纵坐标相反 5b提示:由abc和abc关于l对称,可知cc48,所以b180ac1807848546c提示:到角的两边距离相等的点在角的平分线上 7d提示:按要求动手操作即可8a提示:有bce,dec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 历史建筑单体保护规划基础知识点归纳
- 石大学前卫生学试卷(四)及参考答案
- 生物(深圳卷)2025年中考考前押题最后一卷
- 环保文化用品细分与市场定位研究-洞察阐释
- 新能源汽车企业经营管理方案
- 家庭教育社区支持的现状与发展趋势分析
- 企业数字人才培训机制的构建与优化
- 2025至2030年中国灯插配线行业投资前景及策略咨询报告
- 2025至2030年中国淋膜铜版纸行业投资前景及策略咨询报告
- 2025至2030年中国氨基静电烘漆行业投资前景及策略咨询报告
- 反向开票政策解读课件
- PVC膜生产中的关键技术
- 人工智能概论 课件 第4章 机器学习
- 国际档案日介绍主题班会
- 房屋征收服务投标文件(技术方案)
- 9.20幼儿园爱牙日儿童保护牙齿科普课件
- 孵化合同协议书
- 新生儿期保健-新生儿早期基本保健(EENC)(儿童保健)
- 名著阅读 第16周阅读计划《钢铁是怎样炼成的》整本书阅读与研讨三(作业教学设计)2023-2024学年八年级语文下册同步备课
- JT∕T 1495-2024 公路水运危险性较大工程专项施工方案编制审查规程
- 环保项目运维服务合同
评论
0/150
提交评论