最短路径问题 (2).doc_第1页
最短路径问题 (2).doc_第2页
最短路径问题 (2).doc_第3页
最短路径问题 (2).doc_第4页
最短路径问题 (2).doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

最短路径问题课件设计学校:古蔺县椒园乡初级中学校 学科:数学 设计人:杨普荣教学目标:1、 理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。2、 能利用轴对称平移解决实际问题中路径最短的问题。3、 通过独立思考、合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。教学重点:将实际问题转化为数学问题,运用轴对称平移解决生活中路径最短的问题,确定出最短路径的方法教学难点:探索发现“最短路径”的方案,确定最短路径的作曲及原理。导学过程:一、 创设情境,引入新知识。前面我们探究过一些关于“两点的所有连线钟,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称他们为最短路径问题,现实生活中经常涉及到选择最短路径的问题,本节将利用 数学知识探究实际生活中的最短路径问题。情境一:如图所示,从A地到B地有三条路可供选择,你会选择走哪条路,理由是什么?情境二:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。二、 自主学习,探究新知识问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地到河边什么地方饮马可使他所走的路线全程最短?BAl精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题这个问题后来被称为“将军饮马 问题”你能将这个问题抽象为数学问题吗? 将A,B 两地抽象为两个点,将河l 抽象为一条直 线 B.A.l追问2你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗? (1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和; 追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗? (3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点,设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图)。BAlC问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? 追问1对于问题2,如何将点B“移”到l 的另一侧B处,满足直线l 上的任意一点C,都保持CB 与CB的长度相等? 问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小? 追问2你能利用轴对称的有关知识,找到上问中符合条件的点B吗? 问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? 作法:(1)作点B 关于直线l 的对称 点B;(2)连接AB,与直线l 相交于点C , 则点C 即为所求。 BlABC问题3你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C(与点C 不重合),连接AC,BC,BC, 由轴对称的性质知,BC =BC,BC=BC AC +BC = AC +BC = AB AC+BC = AC+BCBlABCC1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)ABMNE作法:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。证明:由平移的性质,得 BNEM 且BN=EM, MN=CD, BDCE, BD=CE,所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC,CD,DB,CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在ACE中,AC+CEAE, AC+CE+MNAE+MN,即AC+CD+DB AM+MN+BN所以桥的位置建在CD处,AB两地的路程最短。BMNECD已知:如图A是锐角MON内部任意一点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论