膜生物反应器在污水处理中的应用进展.doc_第1页
膜生物反应器在污水处理中的应用进展.doc_第2页
膜生物反应器在污水处理中的应用进展.doc_第3页
膜生物反应器在污水处理中的应用进展.doc_第4页
膜生物反应器在污水处理中的应用进展.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

膜生物反应器在污水处理中的应用进展1 MBR应用情况 目前,越来越多的国家将MBR用于生活污水和工业废水的处理。表1中列出了一些发达国家近年来MBR的应用情况。MBR的应用情况国家应用单位膜供应商处理水量(m3/d)处理对象荷兰1Beverwijk污水处理厂240生活污水荷兰*Varsseveld污水处理厂18 000生活污水英国2Porlock污水处理厂Kubota1900生活污水英国Swanage污水处理厂Kubota13 000生活污水英国Daldowie污水处理厂Kubota10 800生活污水英国Wraxall污水处理厂Kubota290生活污水德国3Buechel污水处理厂Kubota960生活污水德国Markranstadt污水处理厂Zenon6000*生活污水德国Erftverband污水处理厂1500*生活污水德国*Monheim污水处理厂5000*生活污水德国*Kaarst污水处理厂40000*生活污 水爱尔兰Avonmore公司 Kubota7100工业废水爱尔兰Minchmalt厂Kubota1720工业废水比利时4* Heist污水处理厂30000*生活污水比利时*Schilde污水处理厂14000*生活污水奥地利5Halbenrain污水处理厂100垃圾渗滤液奥地利Zenon270生活污水瑞士*Zenon5 000生活污水以色列6Jerusalem污水处理厂4 000生活污水美国724座污水处理厂Zenon7500城市污水加拿大9座污水处理厂Zenon城市污水日本8300余座小区污水回用日本150余座工业废水注:*原文中单位为inh,估计是inhabitants的缩写 ,其义为人口当量,此处按照1 inh=0.5m3/d估算。*污水处理厂仍在设计建设中。*原文中单位为人口当量(Population Equivalents,PE),此处按照1 PE=0.5m3/d估算。在欧洲大部分国家由于国土面积小,地面水体因径流距离较短而导致其自净能力差、生态系统脆弱、易受污染。MBR由于其占地面积小和出水水质优良,在欧洲受到了相当程度的重视,有许多污水处理厂都运用MBR工艺进行了中试规模的污水处理研究,并计划进行工业规模的应用。荷兰在处理能力为240m3/d的中试取得成功以后,正在建造处理能力为18000m3/d的MBR污水处理厂,并计划从2003年开始建造处理能力为(624)104m3/d的MBR污水处 理厂。德国已经建成5家大规模使用MBR的污水处理厂,累计处理能力为21000m3/d;另有两家污水厂已在规划中,其中一家位于Kaarst的污水处理厂设计服务人口为8万人,使用膜面 积总计为88000m2,预算为4600万德国马克,建成后将是世界上最大的使用MBR的污水处理厂。美国和加拿大已有许多投入运行的MBR污水处理厂取得了较好的效果。日本对于MBR的使用较为普遍,主要是用于小区污水的处理与回用及工业(如食品、饮料制造业)废水处理。荷兰Xflow公司开发的MBR在生活污水和食品、林业、造纸等工业废水处理中得到了广泛的应用9,工业废水累计处理流量为245m3/h,其中一家规模最大的生活污水处理厂的处理能力为1100m3/h。2 MBR的优势与改进2.1 MBR的优势MBR与传统工艺相比有以下明显优势1: 由于取消了二沉池及将污泥浓度提高了25倍,减小了占地面积。 出水水质好,可直接回用。出水中SS低于检测限;耐热大肠杆菌被完全除去,噬菌体数量比传统工艺出水低1001000倍;对于重金属的去除很明显(尤其是Cu、Hg、Pb、Zn等),但其去除率取决于金属离子与污泥吸附的程度;有毒的微污染物(如杀虫剂、多环芳烃等)几乎全部吸附在污泥上,因此可与SS同时被去除。 生物处理单元中污泥浓度高、泥龄长,对有机物的去除率高。 对于氮、磷污染物有较高的去除率,出水可满足TP0.15mg/L、TN2.2mg/L的环境最大容忍限度(Maximum Tolerable Risk,MTR)。 污泥产量少,降低了对剩余污泥处置的费用,但MBR污泥的絮体较小且粘度较高。也有试验发现,MBR污泥的浓缩性能和脱水性能与传统工艺产生的污泥并无大的差异。2.2 存在的问题及改进措施MBR在显示出许多传统工艺无法比拟的优点时,也暴露出一些尚需改进的地方,这是研究人员关注的焦点。2.2.1 预处理工艺荷兰的Bentem10等人在进行处理能力为10m3/h的MBR中试研究时,对4种不同的格栅进行了对比试验,栅孔的尺寸为0.250.75mm。试验发现,对原水进行预处理后,原水中的SS可去除30%60%,这样可以改变原水成分,从而改善后续工艺的处理效果, 减轻膜污染,减小剩余污泥产量并改善污泥性状。随着SS的去除,COD也有10%15%的去除。通过中试,Bentem等人认为在使用MBR处理污水时,采用格栅进行预处理是非常必要的。2.2.2 膜污染与清洗膜工艺的一大缺点是膜在运行一段时间以后会因为膜受到污染而导致膜通量的降低,如何减缓膜污染进程从而维持膜通量是应用膜工艺时所面临的一大挑战。英国学者11认为主要有三大因素影响膜污染(见图1),即膜本身的性质、活性污泥的性质和MBR的运行条件三者相互影响。膜材质决定了膜的亲水性和膜孔隙率,膜孔的尺寸则会影响过膜压差(Transmembrane Pressure,TMP)的大小;反应器的构造与错流的速率(Cross Flow Velocity,CFV)将影响到活性污泥中胞外聚合物(Extracellular Polymeric Substances,EPS)的生成、污泥絮体结构和大小以及溶解物的性质;MBR中的HRT/SRT则直接影响到污泥的浓度和EPS的形成与生长。荷兰研究者10在试验中发现,导致膜污染的最重要因素是滤饼层的形成,而原水中的杂质、污泥的性质、MBR的水力学特性以及膜清洗等因素都会影响滤饼层的形成及性质。为了防止滤饼层的形成,以下几点非常重要: 选择透水量衰减速度低的膜,并且控制膜通量; 减少MBR中的短流区,避免过高的装填度; 选择合理的膜工作通量; 使污泥絮体颗粒尽量大,此时滤饼层有较好的透水性; 保持生物相的良好生长,防止EPS和丝状菌大量产生。在已经出现了较厚的滤饼层后,可通过下列方法加以去除: 保持MBR中流体的高度紊动,但注意不要使污泥絮体破碎,否则会影响膜的透水性; 采用变强度曝气可使污泥层破碎,高错流速度有助于控制滤饼层; 水力反洗可有效去除滤饼层,但只在反洗频率高时才有效; 采用间歇出水方式可有效控制滤饼层的形成。试验中还发现,化学清洗可改善生物污染的状况,但在用NaClO对膜进行化学清洗时会导致出水中可提取的有机卤化物(Extractable Organic Halogens,EOX)浓度升高,所以当需要频繁化学清洗时应引起重视。2.2.3 MBR中的氧传递率在用于处理污水的MBR中通常都维持较高的MLSS(812g/L)浓度7,这易导致氧传递率的降低,从而使运行能耗变大。传递层特性、气泡大小和气泡在混合液中的平均停留时间都会影响到氧传递率,而后两项与混合液的粘性关系密切,MBR中混合和曝气的效果以及污泥浓度都会影响混合液的粘性。活性污泥中EPS的生成会增加混合液的粘性,并且使活性污泥的憎水性增强。活性污泥中丝状菌的生长导致污泥膨胀从而使混合液粘性增加,此外丝状菌的新陈代谢还会产生憎水物质,其中可溶性微生物代谢产物(Soluble Microbial Products,SMP)还会导致膜的污染。要保持较高的氧传递率和降低能耗应从两方面出发:一是合理选择曝气及混合装置,使混合液有较高的紊动;二是调节运行参数,使生物相保持良好的生长状态。2.2.4 污泥浓度的控制由于MBR可彻底地将污泥与出水分离,从而保证了优良的出水水质与较高的污泥浓度。因污泥浓度较高,而原水性质与传统工艺相比不会有太大的差异,从而使得MBR中的F/M较低。Renze van Houten等人12认为较低的F/M,一方面可以使产生的剩余污泥量减少而降低了处置剩余污泥的费用,但另一方面使得污泥龄变长。较长的污泥龄有利于世代期较长的细菌生长(如硝化菌),但过长的污泥龄会使微生物产生出SMP。若大分子的SMP被截留在MBR中一方面会污染膜,另一方面SMP会吸附在气水两相的界面上导致氧传递率的降低,而小分子的SMP则会穿过膜进入出水,导致出水水质变差。低F/M还会使MBR中产生EPS,使混合液的粘度升高,从而导致污泥的脱水性能变差,膜过滤阻力变大。所以,虽然较高的污泥浓度能有效减小MBR的体积,但过高的污泥浓度对于MBR正常运行是不利的,在运行MBR时应控制适当的污泥浓度。3 结论综上所述,MBR在污水处理领域已成为倍受瞩目的新工艺,并且得到了广泛的应用。在我国的能源、土地资源和水资源日益紧张而水体污染又非常严重的情况下,可以预计它将有非常广阔的开发和应用前景。 膜生物技术在猪粪废水处理中的应用1 前言 近年来,随着上海市畜禽养殖业的发展和菜篮子工程的实施,集约化、规模化畜禽养殖业迅速崛起。据估算1,2,全市畜禽废弃物年排泄量相当于1700万人口的排泄量之多,若按BOD5估算,全市畜禽BOD5的排泄量相当于3000万人口的排泄规模。为了减轻市郊水环境日趋严重的污染问题,畜禽粪便废水的处理显然极其必要。畜禽粪便废水有机物浓度高、氨氮浓度高、恶臭严重,对其处理目前尚缺乏成功的经验。该类废水的处理难度较高,常规的厌氧好氧处理难以实现氨氮达标排放。本文介绍膜生物技术处理某养猪场排放废水,取得了很好的效果。2 处理设施概况奉贤芦泾饲养场废水处理设施设计水量为60m3/h, 经实地取样分析,进水水质如表1。表1 奉贤芦泾饲养场废水处理设施进水水质和排放要求污染物名称污染物浓度(mg/L)排放标准要求3(mg/L) 化学耗氧量(CODCr)10000400生化耗氧量(BOD5)5000200固体悬浮物(SS)1000150氨氮(NH3-N)5001003工艺选择及工艺流程畜禽粪便废水是一种高COD和高NH3N的废水,要实现去除COD和去除NH3N的目的,达到排放的要求,必须采用具有硝化反硝化功能的生物脱氮系统,理论上来说采用生化厌氧+好氧处理较适合。但以下几点因素限制了厌氧处理技术在畜禽粪便废水处理中的应用:1)厌氧处理对温度、pH等环境因素很敏感,对操作人员要求高,不适用于畜牧场;2)畜禽粪便废水氨氮浓度高,实际操作中容易造成系统酸化;3)厌氧处理会产生一定量的沼气,由于沼气收集系统造价高、操作要求高,若直接排放存在安全隐患。因此,厌氧+好氧处理不是最合适的选择。而单一的好氧处理对氨氮没有很好的处理效果。为了达到稳定脱氮的效果,设计采用处理能力大、净化功能高的膜生物废水处理技术。废水首先经过螺旋式固液分离机预处理后,清液进入调节池,均衡水质水量后用泵打入处理池,处理后通过膜分离单元的水排放,处理过程产生的污泥排入污泥干化池。该工艺流程如图1。4工艺原理及特点生物处理池中关键的膜分离单元,以一定间隔放置在池后端,池内的活性污泥对废水中的有机物进行降解。降解后的水通过中空丝状膜排放。膜孔孔径为0.1m,颗粒性物质及活性污泥不能通过该膜孔而被分离。细菌等不会通过膜孔而流失,而是附着后形成生物膜4,随着时间的增加,生物膜上能生长世代时间较长、增殖速度慢的硝化菌。由于微生物附着生长并使生物膜具有较少的含水率,单位处理池容积内的生物量可比普通活性污泥高520倍,因而具有较大的处理能力。又由于硝化菌的生产繁殖,使处理池不仅能有效地去除有机污染物,且具有一定的硝化脱氮功能。生物处理池采用微孔曝气器曝气,部分污泥回流至池前端,回流比最高可达到9:1。在膜分离装置前,高浓度活性污泥与废水充分混合,有机物在被微生物降解的同时,NH3N也被亚硝酸菌氧化成NH3-,再回流至池前端利用进水的有机物碳源进行反硝化,最终使NH3-还原成为N2,达到脱氮的作用。在正常运转后,处理池中活性污泥浓度可达800012000mg/L。采用膜生物技术的处理工艺与普通活性污泥法相比较,膜生物处理池通过膜分离单元将清水直接抽出,不参加回流的部分污泥可直接被分离,不需要再设置二沉池进行固液分离。这样池内的活性污泥及微生物不会流失,可保持高浓度的微生物菌类,这样保证了稳定的有机物降解率和NH3N去除率,同时由于处理池中的活性污泥浓度是普通活性污泥法污泥浓度的34倍,使其占地面积只有普通活性污泥法处理池的1/41/3。5调试及运行状况该废水处理站2000年3月开始调试,取松江张泽养猪场好氧活性污泥进行接种、驯化。进水量在驯化过程中渐次放大,维持2周后投入使用。分4个阶段进行水质监测(见表3)。通过表3可以看到,随着时间的推移,池中的硝化作用逐渐增强,NH3-N指标逐渐达到标准,其间有由于NO3-N累积引起CODCr超标、最后完全达标的过程。膜生物技术脱氮作用是通过硝化菌的不断繁殖实现的。 根据各阶段调试的出水水质监测(见图3),2000年8月出水水质分析结果显示, CODCr=150 mg

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论