



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新高度教育向量知识点1. 有向线段:具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A为始点,B为终点的有向线段记作,应注意:始点一定要写在终点的前面,已知,线段AB的长度叫做有向线段的长(或模),的长度记作.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段表示向量时,我们就说向量.另外,在印刷时常用黑体小写字母a、b、c、等表示向量;手写时可写作带箭头的小写字母、等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量和同向且等长,即和相等,记作=.(2) 零向量:长度等于零的向量叫做零向量,记作.零向量的方向不确定.(3) 位置向量:任给一定点O和向量,过点O作有向线段,则点A相对于点O的位置被向量所aaa唯一确定,这时向量又常叫做点A相对于点O的位置向量.(4) 相反向量:与向量等长且方向相反的向量叫做向量的相反向量,记作.显然, .(5) 单位向量:长度等于1的向量,叫做单位向量,记作.与向量同方向的单位向量通常记作,容易看出:.(6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量平行于向量,记作.零向量与任一个向量共线(平行).3.已知向量、,在平面上任取一点A,作,作向量,则向量叫做向量与的和(或和向量),记作+,即.这种求两个向量和的作图法则,叫做向量求和的三角形法则.4.已知向量、,在平面上任取一点A,作,如果A、B、D不共线,则以AB、AD为邻边作平行四边形ABCD,则对角线上的向量=+=+.这种求两个向量和的作图法则,叫做向量求和的平行四边形法则.5.已知向量、,在平面上任取一点O,作,则+=,向量叫做向量与的差,并记作-,即=.由此推知:(1) 如果把两个向量的始点放在一起,则这两个向量的差是减向量的终点到被减向量的终点的向量;(2) 一个向量等于它的终点相对于点O的位置向量减去它的始点相对于点O的位置向量;(3) 一个向量减去另一个向量,等于加上这个向量的相反向量.6.向量加法满足如下运算律: (1); (2).7.数乘向量的一般定义:实数和向量的乘积是一个向量,记作.当时,与同方向,;当时,与反方向,;当或时,.8.数乘向量满足以下运算律: (1)1=,(-1)=; (2);(3); (4).9.平行向量基本定理:如果向量,则的充分必要条件是,存在唯一的实数,使.该定理是验证两向量是否平行的标准.10已知轴,取单位向量,使与同方向,对轴上任意向量,一定存在唯一实数x,使.这里的x叫做在轴上的坐标(或数量),x的绝对值等于的长,当与同方向时,x是正数,当与反方向时,x是负数.(1) 设,则当且仅当;=.这就是说,轴上两个向量相等的充要条件是它们的坐标相等;轴上两个向量和的坐标等于两个向量的坐标的和.(2) 向量的坐标通常用AB表示,常把轴上向量运算转化为它们的坐标运算,得著名的沙尔公式:AB+BC=AC.(3) 轴上向量的坐标运算:起点和终点在轴上的向量的坐标等于它的终点坐标减去起点坐标.即在轴x上,若点A的坐标为,点B的坐标为,则AB=.可得到数轴上两点的距离公式:.11.平面向量的分解定理:设,是平面上的两个不共线的向量,则平面上任意一个向量能唯一地表示成,的线性组合,即.12.直线的向量参数方程:(t为参数):;.特别地,当时,此为中点向量表达式.12在直角坐标系XOY内,分别取与x轴、与y轴方向相同的两个单位向量、,在XOY平面上任作一向量,由平面向量分解定理可知,存在唯一的有序实数对,使得,则叫做向量在直角坐标系XOY中的坐标,记作.13向量的直角坐标:任意向量的坐标等于终点B的坐标减去起点A的坐标,即若A、B,则.向量的直角坐标,也常根据向量的长度和方向来求:.14.向量的坐标运算公式:设,则:;.15.向量的长度(模)公式:若,则;若A,B,则.16.中点公式:若A,B,点M(x,y)是线段AB的中点,则.17.平移是一种基本的几何(保距)变换,它本身就是一个向量.教材中有点的平移和坐标轴的平移(平面解析几何中讲到).18.在图形F上任取一点P(x,y),设平移向量到图形上的点,则点的平移公式为:.19.以x轴的正半轴为始边,以射线OA为终边的角,叫做向量的方向角.向量在轴上的投影数量为.20.两个向量,的内积揭示了长度、角度与向量投影之间的深刻联系:(1) 两个向量的内积等于一个向量的长与另一个向量在这个方向上正投影数量的乘积,即;(2) 两个向量的内积等于这两个向量的模与它们夹角的余弦的积,即;(3) 两个向量的内积是数量而不是向量.21.内积运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电线电缆标准知识培训课件
- 电磁式电压表的原理
- 高考励志课件
- 电瓶车刹车知识培训内容课件
- 1.3 第2课时地球的公转 同步分层练(含答案)地理人教版七年级上册
- 北京音乐联考试题分析及答案
- 北京初三道法开卷考试及答案
- 电焊工常用知识培训课件
- 董秘资格考试题库及答案
- 聊城中考试题及答案
- (2025年标准)淘宝分红合同协议书
- 矿山工程合同范本
- 产品需求分析模板及开发计划表
- 商用中小型冷库知识培训课件
- 2025年黑龙江省水利水电集团有限公司招聘考试笔试试题(含答案)
- 小红书运营:小红书账号运营培训课件
- 兽医实验室安全知识考试参考题库(含答案)
- 部编版五年级上册道德与法治《第一单元测试题及答案》
- 湖南文艺出版社小学六年级音乐上册教案 (全册)
- 四年级语文上册第一单元【教材分析】课件
- 《教育研究方法——教育调查法》PPT课件
评论
0/150
提交评论