函数基本性质.doc_第1页
函数基本性质.doc_第2页
函数基本性质.doc_第3页
函数基本性质.doc_第4页
函数基本性质.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数基本性质一、函数单调性的常用结论:1、若均为某区间上的增(减)函数,则在这个区间上也为增(减)函数2、若为增(减)函数,则为减(增)函数3、若与的单调性相同,则是增函数;若与的单调性不同,则是减函数。4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。二、函数奇偶性的常用结论:1、如果一个奇函数在处有定义,则,如果一个函数既是奇函数又是偶函数,则(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数和复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数的定义域关于原点对称,则可以表示为,该式的特点是:右端为一个奇函数和一个偶函数的和。函数的基本性质复习教学目标:函数的三个基本性质:单调性,奇偶性,周期性教学过程一、单调性1定义:对于函数,对于定义域内的自变量的任意两个值,当时,都有,那么就说函数在这个区间上是增(或减)函数。2证明方法和步骤:(1) 设元:设是给定区间上任意两个值,且;(2) 作差:;(3) 变形:(如因式分解、配方等);(4) 定号:即;(5) 根据定义下结论。3二次函数的单调性:对函数,当时函数在对称轴的左侧单调减小,右侧单调增加;当时函数在对称轴的左侧单调增加,右侧单调减小;例:讨论函数在(-2,2)内的单调性4复合函数的单调性:复合函数在区间具有单调性的规律见下表:增 减 增 减 增 减 增 减 减 增 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。例:函数的单调减区间是 ( )A. B. C. D.5函数的单调性的应用:判断函数的单调性;比较大小;解不等式;求最值(值域)。例1:奇函数在定义域上为减函数,且满足,求实数的取值范围。例2:已知是定义在上的增函数,且,(1)求;(2)满足的实数的范围。二、奇偶性1定义:如果对于f(x)定义域内的任意一个x,都有,那么函数f(x)就叫偶函数;如果对于f(x)定义域内的任意一个x,都有,那么函数f(x)就叫奇函数。2奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数为奇函数,且在x=0处有定义,则;3判断一个函数的奇偶性的步骤先求定义域,看是否关于原点对称; 再判断或 是否恒成立。例:判断函数 的奇偶性。例:设是上的奇函数,且当时,求当时的解析式。例3:已知:函数定义在R上,对任意x,yR,有且。(1)求证:;(2)求证:是偶函数;例4:判断下列函数的奇偶性:(1)(2)例5:设函数的定义域为,且对任意的都有。(1)求的值;(2)判断的奇偶性,并加以证明。课后专练1. 若的定义域为R,对任意有=,当时且(1)判断在R上的单调性; (2)若,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论