中考代数几何-动手操作与运动变换型问题.doc_第1页
中考代数几何-动手操作与运动变换型问题.doc_第2页
中考代数几何-动手操作与运动变换型问题.doc_第3页
中考代数几何-动手操作与运动变换型问题.doc_第4页
中考代数几何-动手操作与运动变换型问题.doc_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考动手操作与运动变换型问题1对于实践操作型问题,在解题过程中学生能够感受到数学学习的情趣与价值,经历“数学化”和“再创造”的过程,不断提高自己的创新意识与综合能力,这是全日制义务教育数学课程标准(实验稿)的基本要求之一,因此,近年来实践操作性试题受到命题者的重视,多次出现.2估计在今年的中考题中,实践操作类题目依旧是出题热点,仍符合常规题型,与三角形的全等和四边形的性质综合考查需具备一定的分析问题能力和归纳推理能力图形的设计与操作问题,主要分为如下一些类型:1已知设计好的图案,求设计方案(如:在什么基本图案的基础上,进行何种图形变换等)2利用基本图案设计符合要求的图案(如:设计轴对称图形,中心对称图形,面积或形状符合特定要求的图形等)3图形分割与重组(如:通过对原图形进行分割、重组,使形状满足特定要求)4动手操作(通过折叠、裁剪等手段制作特定图案)解决这样的问题,除了需要运用各种基本的图形变换(平移、轴对称、旋转、位似)外,还需要综合运用代数、几何知识对图形进行分析、计算、证明,以获得重要的数据,辅助图案设计另外,由于折叠操作相当于构造轴对称变换,因此折叠问题中,要充分利用轴对称变换的特性,以获得更多的图形信息必要时,实际动手配合上理论分析比单纯的理论分析更为快捷有效从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的.动态问题一般分两类,一类是代数综合题,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考查.所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分.实践操作问题:解答实践操作题的关键是要学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数学问题解答实践操作题的基本步骤为:从实例或实物出发,通过具体操作实验,发现其中可能存在的规律,提出问题,检验猜想在解答过程中一般需要经历操作、观察、思考、想象、推理、探索、发现、总结、归纳等实践活动过程,利用自己已有的生活经验和数学知识去感知发生的现象,从而发现所得到的结论,进而解决问题动态几何问题:1、动态几何常见类型(1)点动问题(一个动点)(2)线动问题(二个动点)(3)面动问题(三个动点)2、运动形式平移、旋转、翻折、滚动3、数学思想函数思想、方程思想、分类思想、转化思想、数形结合思想4、解题思路(1)化动为静,动中求静(2)建立联系,计算说明(3)特殊探路,一般推证类型一、图形的剪拼问题1直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形方法如下(如图所示):请你用上面图示的方法,解答下列问题:(1)对下图中的三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;(2)对下图中的四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形 答案与解析 举一反三 【思路点拨】对于三角形的分割重组,要想拼成一个矩形,则分割时必须构造出直角来,示例中通过作中位线的垂线段而分割出两个直角三角形对于四边形的分割重组,可以先把四边形转化为三角形的问题,再利用三角形的分割重组方法进行【答案与解析】解:(1)如图所示: (2)如图所示:【总结升华】按照三角形的剪拼方法,探索规律,将任意四边形先分割成三角形,再进行剪拼,使学生经历由简单到复杂的探索过程 【变式】如图所示,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是( ) 答案与解析 【答案】 裁剪之后,将最后折叠成的小正方形按原来对折相反的方向展开,折痕(虚线)所在直线即为对称轴,则剪出的菱形小洞会对称地出现在折痕的另一侧,见下图:故选D类型二、实践操作2如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH(1)求证:APB=BPH;(2)当点P在边AD上移动时,PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由 答案与解析 【思路点拨】(1)要证APB=BPH,由内错角APB=PBC,即证PBC=BPH,折叠后EBP=EPB=90,再由性质等角的余角相等即可得证(2)PHD的周长为PD+DH+PH.过B作BQPH构造直角三角形,再利用三角形全等:ABPQBP和BCHBQH证明AP=QP, CH=QH,可得其周长为定值(3),关键是用x来表示BE、CF.过F作FMAB,垂足为M,先由边角关系得EFMBPA,得=x在RtAPE中可由勾股定理表示出BE,再由,很容易用x表示出S,再配方求最值【答案与解析】解:(1)PE=BE, EBP=EPB 又EPH=EBC=90, EPH-EPB=EBC-EBP 即PBC=BPH 又ADBC, APB=PBC APB=BPH(2)PHD的周长不变,为定值 8 证明:过B作BQPH,垂足为Q 由(1)知APB=BPH, 又A=BQP=90,BP=BP, ABPQBP AP=QP, AB=BQ 又 AB=BC, BC = BQ 又C=BQH=90,BH=BH, BCHBQH CH=QH PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)过F作FMAB,垂足为M,则. 又EF为折痕,EFBP. , 又A=EMF=90, EFMBPA =x 在RtAPE中, 解得, 又四边形PEFG与四边形BEFC全等, 即: 配方得, 当x=2时,S有最小值6【总结升华】本题将函数和几何知识较好的综合起来,对能力的要求较高本题考查了三角形全等、正方形的性质、勾股定理、梯形的面积公式、折叠的性质、二次函数等相关知识难度较大,是一道很好的压轴题,通过此题能够反映出学生的思维能力及数学知识的掌握程度,解答本题要学会将题目中的已知量与待求量联系起来此题的关键是证明几组三角形的全等,以及用x来表示S3刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图、图中,B90,A,A30,BC6 cm;图(参中,D90,E45,DE4 cm图是刘卫同学所做的一个实验:他将DEF的直角边DE与ABC的斜边AC重合在一起,并将DEF沿AC方向移动在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合)(1)在DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐_(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题:当DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题:当DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题:在DEF的移动过程中,是否存在某个位置,使得FCD15?如果存在,求出AD的长度;如果不存在,请说明理由请你分别完成上述三个问题的解答过程答案与解析 举一反三 【思路点拨】本题以动三角形为背景,考查特殊角的三角函数值、勾股定理【答案与解析】解:(1)变小(2)问题: B90,A30,BC6, AC12 FDE90,DEF45,DE4, DF4 连结FC,设FCAB, FCDA30 在RtFDC中,DC ADACDC 即ADcm时,FCAB 问题: 设ADx,在RtFDC中,FC2DC2+FD2(12-x)2+16 (i)当FC为斜边时,由AD2+BC2FC2得, (ii)当AD为斜边时,由得,(不符合题意,舍去) (iii)当BC为斜边时,由得, 1442480, 方程无解 另解:BC不能为斜边 FCCDFC+AD12 FC、AD中至少有一条线段的长度大于6 BC不能为斜边 由(i)、(ii)、(iii)得,当cm时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形 问题: 解法一:不存在这样的位置,使得FCD15 理由如下:假设FCD15 由FED45,得EFC30 作EFC的平分线,交AC于点P, 则EFPCFPFCP15, PFPCDFPDFE+EFP60 PD,PCPF2FD8 PC+PD8+ 不存在这样的位置,使得FCD15 解法二:不存在这样的位置,使得FCD15 假设FCD15,设ADx 由FED45,得EFC30 作EHFC,垂足为H HEEF,CEACADDE8-x, 且 FDCEHC90,DCF为公共角, CHECDF 又, 整理后,得到方程 (不符合题意,舍去), (不符合题意,舍去) 不存在这样的位置,使得FCD15【总结升华】本题的突破点是将图形静止于所要求的特殊位置,根据题中条件得出相应的结论本题涉及分类讨论思想、方程思想,有一定的难度【变式】如图,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DCOB,OB=6,CD=BC=4,BCOB于B,以O为坐标原点,OB所在直线为x轴建立平面直角坐标系,开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处.为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线将直角梯形OBCD分成面积相等的两部分,你认为直线是否存在?若存在求出直线的解析式,若不存在,请说明理由. 答案与解析 【答案】解:如图,存在符合条件的直线, 过点D作DAOB于点A,则点P(4,2)为矩形ABCD的对称中心 过点P的直线只要平分的面积即可.易知,在OD边上必存在点H,使得直线PH将面积平分,从而,直线PH平分梯形OBCD的面积.即直线PH为所求直线 设直线PH的表达式为且过点直线OD的表达式为解之,得点H的坐标为PH与线段AD的交点F的坐标为解之,得直线的表达式为类型三、平移旋转型操作题4两个全等的直角三角形ABC和DEF重叠在一起,其中A60,AC1固定ABC不动,将DEF进行如下操作:(1)如图所示,DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断地变化,但它的面积不变化,请求出其面积(2)如图所示,当D点移动到AB的中点时,请你猜想四边形CDBF的形状,并说明理由(3)如图所示,DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转DEF,使DF落在AB边上,此时,点恰好与B点重合,连结AE,请你求出sin的值 【思路点拨】平移时,CFAD,ADBE,根据等底等高的特征,将求梯形面积转化为求,旋转时需知道ABE90,BECB,运用相似等知识解答【答案与解析】【解析】(1)过C点作CGAB于G,如图 在RtAGC中, AB2, (2)菱形 CDBF,FCBD,四边形CDBF是平行四边形 DFAC,ACB90, CBDF, 四边形CDBF是菱形(3)解法一:过D点作DH AE于H,如图, 则, 又, 在RtDHE中, 解法二:ADHAEB, ,即, , 【总结升华】本题是平移和旋转类型的操作题,需知道平移和旋转的性质,这两种变换都是全等变换.类型四、动态数学问题5如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿轴的正方向运动,M是线段AC的中点将线段AM以点A为中心,沿顺时针方向旋转,得到线段AB过点B作轴的垂线,垂足为E,过点C作轴的垂线,交直线BE于点D,运动时间为秒 (1)当点B与点D重合时,求的值;(2)设BCD的面积为S,当为何值时,;(3)连接MB,当MBOA时,如果抛物线的顶点在ABM内部(不包括边),求a的取值范围答案与解析 举一反三 【思路点拨】(1)易证RtCAORtABE;当B、D重合时,BE的长已知(即OC长),根据AC、AB的比例关系,可得AO、BE的比例关系,由此求得t的值(2)求BCD的面积时,可以CD为底、BD为高来解,那么表示出BD的长是关键;RtCAORtABE,且知道AC、AB的比例关系,即可通过相似三角形的对应边成比例求出BE的长,进一步得到BD的长,在表达BD长时,应分两种情况考虑:B在线段DE上,B在ED的延长线上(3)通过配方法,可得抛物线的顶点坐标,将其横坐标分别代入直线MB、AB的解析式中,可得抛物线对称轴与这两条直线的交点坐标,根据这两个坐标即可判定出a的取值范围【答案与解析】解:(1), RtCAORtABE , , (2)由RtCAORtABE可知:, 当08时, 当8时, ,(为负数,舍去) 当或时,(3)如图,过M作MN轴于N,则 当MBOA时, 抛物线的顶点坐标为(5,) 它的顶点在直线上移动直线交MB于点(5,2),交AB于点(5,1) 12 【总结升华】本题是二次函数综合题,属于图形的动点问题,前两问的关键在于找出相似三角形,得到关键线段的表达式,注意点在运动过程中未知数的取值范围问题最后一问中,先得到抛物线的顶点坐标是简化解题的关键【变式】如图,平行四边形ABCD中,AB=10,AD=6,A=60,点P从点A出发沿折线AB-BC以每秒1个单位长的速度向点C运动,当P与C重合时停止运动,过点P作AB的垂线PQ交AD或DC于Q设P运动时间为t秒,直线PQ扫过平行四边形ABCD的面积为S求S关于t的函数解析式 答案与解析 【答案】解:(1);(2);(3). 综上,S关于t的函数解析式为: 一、选择题1. 将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形,将纸片展开,得到的图形是()2. 如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是( )A正三角形 B正方形C正五边形 D正六边形3. 如图,把矩形ABCD对折,折痕为MN(图甲),再把B点叠在折痕MN上的B处.得到RtABE(图乙),再延长EB交AD于F,所得到的EAF是( )A. 等腰三角形 B. 等边三角形 C. 等腰直角三角形 D. 直角三角形4. 如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且EDBC,则CE的长是( )A、 B、C、D、 二、填空题5. 如图(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图(2)所示的一个菱形对于图(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:_6如图,ABC中,BAC=600,ABC=450,AB= ,D是线段BC上的一个动点,以AD为直径画O分别交AB,AC于E,F ,连接EF,则线段EF长度的最小值为_ 7如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BEEDDC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒设P、Q同发t秒时,BPQ的面积为ycm2已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:ADBE5;cosABE;当0t5时,yt2;当t秒时,ABEQBP;其中正确的结论是_ _(填序号)三、解答题8阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图(1)所示,将它们分割后拼接成一个新的正方形他的做法是:按图(2)所示的方法分割后,将三角形纸片绕AB的中点D旋转至三角形纸片处,依此方法继续操作,即可拼接成一个新的正方形DEFG请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图(3)所示请将其分割后拼接成一个平行四边形要求:在图(3)中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图(4),在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ请在图(4)中探究平行四边形MNPQ面积的大小(画图并直接写出结果)9. 如图(a),把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸已知标准纸的短边长为a(1)如图(b),把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B处,铺平后得折痕AE;第二步 将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF;则AD:AB的值是_,AD,AB的长分别是_,_;(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值;(3)如图(c),由8个大小相等的小正方形构成“L”型图案,它的4个顶点E,F,G,H分别在“16开”纸的边AB,BC,CD,DA上,求DG的长;(4)已知梯形MNPQ中,MNPQ,M90,MNMQ2PQ,且四个顶点M,N,P,Q都在“4开”纸的边上,请直接写出两个符合条件且大小不同的直角梯形的面积10. 操作与探究(1)图(a)是一块直角三角形纸片将该三角形纸片按图中方法折叠,点A与点C重合,DE为折痕试证明CBE是等腰三角形;(2)再将图(b)中的CBE沿对称轴EF折叠(如图(b)通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”你能将图(c)中的ABC折叠成一个组合矩形吗?如果能折成,请在图(c)中画出折痕;(3)请你在图(d)的方格纸中画出一个斜三角形,同时满足下列条件:折成的组合矩形为正方形;顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四边上)请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?11. 在图1至图5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE2b,且边AD和AE在同一直线上操作示例:当2ba时,如图1,在BA上选取点G,使BGb,连接FG和CG,裁掉FAG和CGB并分别拼接到FEH和CHD的位置构成四边形FGCH思考发现:小明在操作后发现:该剪拼方法是先将FAG绕点F逆时针旋转90到FEH的位置,易知EH与AD在同一直线上,连接CH由剪拼方法可得DHBG,故CHDCGB,从而又可将CGB绕点C顺时针旋转90到CHD的位置这样,对于剪拼得到的四边形FGCH(如图所示),过点F作FMAE于点M(图略),利用SAS公理可判断HFMCHD,易得FHHCGCFG,FHC90进而根据正方形的判定方法,可以判断出四边形FGCH是正方形实践探究:(1)正方形FGCH的面积是_;(用含a、b的式子表示)(2)类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图 联想拓展:小明通过探究后发现:当ba时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移当ba时,如图所示的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由12. 在RtPOQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,AOB的周长是否存在最小值.若存在,求出最小值;若不存在,请说明理由. 【答案与解析】 一、选择题1.【答案】C;【解析】本题是折叠、裁剪问题,折叠会体现对称,可以动手操作验证.2.【答案】D;【解析】本题一方面考查学生的空间想象能力,另一方面还考查学生的动手操作能力.当学生的空间想象受到影响时,可借助动手实践,直接折纸、剪纸,得到答案.答案为D.3.【答案】B;【解析】证明AE=AF,EAF=60,得EAF为等边三角形.4.【答案】D.二、填空题5.【答案】答案不唯一 可供参考的有:它内角的度数为60、60、120、120;它的腰长等于上底长;它的上底等于下底长的一半【解析】拼图注意研究重叠的边和有公共点的角,由图可以看出三个下底上的角拼成一个平角,上底和腰相等.6.【答案】;【解析】由垂线段的性质可知,当AD为ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20EsinEOH=20Esin60,当半径OE最短时,EF最短,连接OE,OF,过O点作OHEF,垂足为H,在RtADB中,解直角三角形求直径AD,由圆周角定理可知EOH=12EOF=BAC=60,在RtEOH中,解直角三角形求EH,由垂径定理可知EF=2EH 如图,连接OE,OF,过O点作OHEF,垂足为H,在RtADB中,ABC=45,AB= ,AD=BD=2,即此时圆的直径为2,由圆周角定理可知EOH= EOF=BAC=60,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论