


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
17.2勾股定理的逆定理教学目标知识与技能1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是否为直角三角形3、会认识并判别勾股数过程与方法1、通过对勾股定理的逆定理的探索,经历知识的发生、发展和形成过程.2、通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用情感、态度与价值观1、通过用三角形三边间的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系.2、在对勾股定理的逆定理的探索中,培养了学生的交流、合作和严谨的学习态度,同时感悟勾股定理和逆定理的应用价值.重点难点重点勾股定理的逆定理及应用难点勾股定理的逆定理的证明教学设计一、创设情境,提出问题一次一队建筑工人上班时只带了一根皮尺,忘记带直角工具了,但是需要做一个直角,怎么办呢?思考:按照这种做法,三角形三边满足关系:。他们真的能够得到直角三角形吗?留下课堂悬念二、归纳猜想1、回忆勾股定理的内容是什么?勾股定理:如果直角三角形的两条直角边分别为、,斜边长为,那么2、你能写出它的逆命题吗?勾股定理的逆命题:如果三角形的三边长、满足,那么这个三角形是直角三角形。勾股定理的逆命题是否正确?三、探究新知证明勾股定理的逆命题AA已知,且,求证:CBBC证明:作,使,则,取正值在和中(SSS)归纳:如果三角形的三边长、满足,那么这个三角形是直角三角形,这个定理为勾股定理的逆定理.四、例题分析例1:判断由线段,组成的三角形是不是直角三角形?(1),;解:最大边为17 以,为边长的三角形是直角三角形(2),;解:最大边为15 以,为边长的三角形不是直角三角形勾股数:像15,17,8能够成为直角三角形三条边长的三个正整数,称为勾股数。练习1:判断下列几组线段能否构成直角三角形?(1),;(2),;(3),;小组比赛:比一比哪组做的又快又好?练习2:已知ABC中A、B、C的对边分别是a、b、c,下面以a、b、c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1),;(2),;(3),;(4),;(5),;(6);(7).五、知识小结1.了解勾股定理的逆定理及其证明2.勾股定理逆定理:会判定直角三角形3. 勾股数是什么样的数?现在你明白课前问题中为什么三角形三边满足关系:能够得到直角三角形的原理了吗?六、课后作业小组合作:比一比哪组知道的勾股数最多.板书设计 17.2勾股定理的逆定理勾股定理:如果直角三角形的两条直角边分别为、,斜边长为,那么勾股定理的逆定理:如果三角形的三边长、满足,那么这个三角形是直角三角形.勾股数:能够构成直角三角形 正整数小组比赛7道题教学反思1、部分学生书写中不注重
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于情境教学的初中化学课堂教学效果评价研究论文
- 小学语文实验:磁铁磁力衰减故事创作的语文实验探究与反思方法与技巧论文
- 基于绿色物流的电商包装废弃物回收体系优化论文
- 小学语文革命题材课文教学中的问题意识与解决策略研究论文
- 中国医药中间体市场供需格局及投资风险分析报告2025年
- 节假日公司管理制度
- 苗木进出库管理制度
- 茶艺师外派管理制度
- 溶液-2021中考化学一模分类汇编(上海专用)
- 财务管理职位操作指南
- 2025年临床执业医师考试重要技能试题及答案
- 住宅性能评定技术标准
- 2025年中国铁路小型养路机械市场调查研究及发展战略规划报告
- 2025年水发集团社会招聘(249人)笔试参考题库附带答案详解
- 驾驶员汛期专项安全培训
- 校园监控安防系统
- 2025年初中语文名著阅读《林海雪原》知识点总结及练习
- 直击重点:2024年演出经纪人资格证试题及答案
- T-GSEE 14-2024 额定电压6kV( Um=7.2kV)到35kV( Um=40.5kV)交联聚乙烯绝缘电力电缆熔接头
- RPA技术在国有企业数智化转型中的应用研究
- 药事管理与药物治疗学委员会课件
评论
0/150
提交评论