一维对流扩散问题求解.doc_第1页
一维对流扩散问题求解.doc_第2页
一维对流扩散问题求解.doc_第3页
一维对流扩散问题求解.doc_第4页
一维对流扩散问题求解.doc_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Subjects:A property is transported by means of convection and diffusion through the one-dimensional domain. The governing equation is; boundary conditions are at x=0 and at x=L. Using five equally spaced cells and the central differencing scheme for convection and diffusion calculate the distribution of as a function of x for(i)Case 1: u=0.1 m/s, (ii) Case2: Case 1: u=2.5 m/s, and compare the results with the analytical solution.(iii)Case 3: recalculate the solution for u=2.5m/s with 20 grid nodes and compare the results with the analytical solution, the following date apply: length L=1.0 m,.Solution:Programming language:File name:二维稳态导热模拟.cppCompile software: Microsoft Visual C+ 6.0Code:#include #include#includeusing namespace std;#define Gn1 5 /网格节点数.#define Gn2 20 /网格节点数.#define P 1 /流体密度,单位:kg/m/m/m.#define ProA 1 /A端传递特性.#define ProB 0 /B端传递特性./FDD/追赶法过程void TDMA1(double a,double b, double c ,double f,double *p) /矩阵形式/b0c0 0 0 /=f0/a0b1 c1 0 /=f1 /. . . . ./0 0 . b(N-1) c(N-2) /=f(N-1)double dGn1-1,uGn1,llGn1-1, yGn1,XGn1;int i;for(i=0; i=Gn1-2;i+)di = ci;u0 = b0;for(i=1; i=Gn1-1;i+)lli-1=ai-1/ui-1;ui=bi-lli-1*ci-1;y0=f0;for(i=1; i=0;i-)Xi=(yi-ci*Xi+1)/ui;for (i=0; i=Gn1-1;i+)*(p+i)=Xi; void TDMA2(double a,double b, double c ,double f,double *p) double dGn2-1,uGn2,llGn2-1, yGn2,XGn2;int i;for(i=0;i=Gn2-2;i+)di=ci;u0 = b0;for(i=1;i=Gn2-1;i+)lli-1=ai-1/ui-1; ui=bi-lli-1*ci-1;y0 = f0;for(i=1;i=0;i-)Xi=(yi-ci*Xi+1)/ui;for (i=0;i=Gn2-1;i+)*(p+i)=Xi; void main() double u,L=1,T=0.1,min_x,F,D,aW,aE,m,n;double aGn2,bGn2,cGn2,fGn2,XGn2; int serial_number1, serial_number2,i;printf(There are four methods to solve these cases:n); printf(1.The central differencing scheme.n); printf(2.The upwind differencing scheme.n); printf(3.The hybrid differencing scheme.n); printf(4.The power-law scheme.n); printf(Please input the serial number of the method which you want to use:); scanf(%d,&serial_number1); printf(There are three cases in this subject:n); printf(1. u=0.1m/s with 5 grid nodes.n); printf(2. u=2.5m/s with 5 grid nodes.n); printf(3. u=2.5m/s with 20 grid nodes.n); printf(Please input the serial number of the case which you want to solve:); scanf(%d,&serial_number2);if (serial_number1=1)/中心差分法if (serial_number2=1)/第一题开始 u=0.1;min_x=L/Gn1;F=P*u;D=T/min_x;aW=D+F/2;aE=D-F/2;m=2*D+F;n=2*D-F;for(i=0;iGn1-1;i+)ai=-aW;ci=-aE;for(i=0;iGn1;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn1-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;void TDMA1(double a,double b, double c ,double f,double *p);TDMA1(a,b,c,f,X);printf(Result:X); printf(%d,Gn1); printf(=n); for (i=0;i=Gn1-1;i+) printf( );printf(%lfn,Xi);else if(serial_number2=2)/第二题开始u=2.5;min_x=L/Gn1;F=P*u;D=T/min_x;aW=D+F/2;aE=D-F/2;m=2*D+F;n=2*D-F;for(i=0;iGn1-1;i+)ai=-aW,ci=-aE;for(i=0;iGn1;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn1-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;TDMA1(a,b,c,f,X);printf(Result:X); printf(%d,Gn1); printf(=n); for (i=0;i=Gn1-1;i+) printf( );printf(%lfn,Xi);else if(serial_number2=3)/第三题开始u=2.5;min_x=L/Gn2;F=P*u;D=T/min_x;aW=D+F/2;aE=D-F/2;m=2*D+F;n=2*D-F;for(i=0;iGn2-1;i+) ai=0;ci=0;for(i=0;iGn2;i+) bi=0;fi=0;for(i=0;iGn2-1;i+)ai=-aW;ci=-aE;for(i=0;iGn2;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn2-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;TDMA2(a,b,c,f,X);printf(Result:X); printf(%d,Gn2); printf(=n); for (i=0;i=Gn2-1;i+) printf( );printf(%lfn,Xi);else printf(NO case is selected,please check out the input serial number.);else if(serial_number1=2)/一阶迎风方法if(serial_number2=1)/第一题开始 u=0.1;min_x=L/Gn1;F=P*u;D=T/min_x;aW=D+F;aE=D;m=2*D+F;n=2*D;for(i=0;iGn1-1;i+) ai=0;ci=0;for(i=0;iGn1;i+) bi=0;fi=0;for(i=0;iGn1-1;i+)ai=-aW;ci=-aE;for(i=0;iGn1;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn1-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;TDMA1(a,b,c,f,X);printf(Result:X); printf(%d,Gn1); printf(=n); for (i=0;i=Gn1-1;i+) printf( ); printf(%lfn,Xi);else if(serial_number2=2)/第二题开始u=2.5;min_x=L/Gn1;F=P*u;D=T/min_x;aW=D+F;aE=D;m=2*D+F;n=2*D;for(i=0;iGn1-1;i+)ai=-aW;ci=-aE;for(i=0;iGn1;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn1-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;TDMA1(a,b,c,f,X);printf(Result:X); printf(%d,Gn1); printf(=n); for (i=0;i=Gn1-1;i+) printf( ); printf(%lfn,Xi);else if(serial_number2=3)/第三题开始u=2.5;min_x=L/Gn2;F=P*u;D=T/min_x;aW=D+F;aE=D;m=2*D+F;n=2*D;for(i=0;iGn2;i+) ai=0;ci=0;for(i=0;iGn2+1;i+) bi=0;fi=0;for(i=0;iGn2-1;i+)ai=-aW;ci=-aE;for(i=0;iGn2;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn2-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;TDMA2(a,b,c,f,X);printf(Result:X); printf(%d,Gn2); printf(=n); for (i=0;i=Gn2-1;i+) printf( ); printf(%lfn,Xi);else printf(No case is selected,please check out the input serial number.n);else if(serial_number1=3)/混合方法if(serial_number2=1)/第一题开始 u=0.1; min_x=L/Gn1; F=P*u; D=T/min_x; aW=F; aE=0; m=2*D+F; n=2*D; for(i=0;iGn1-1;i+)ai=-aW; ci=-aE; for(i=0;iGn1;i+) if(i=0)bi=-ci+m;fi=m*ProA; else if(i=Gn1-1)bi=-ai-1+n;fi=n*ProB; else bi=-ci-ai-1;fi=0; TDMA1(a,b,c,f,X); printf(Result:X); printf(%d,Gn1); printf(=n); for (i=0;i=Gn1-1;i+) printf( ); printf(%lfn,Xi);else if(serial_number2=2)/第二题开始u=2.5;min_x=L/Gn1;F=P*u;D=T/min_x;aW=F;aE=0;m=2*D+F;n=2*D;for(i=0;iGn1-1;i+)ai=-aW;ci=-aE;for(i=0;iGn1;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn1-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;TDMA1(a,b,c,f,X); printf(Result:X); printf(%d,Gn1); printf(=n); for (i=0;i=Gn1-1;i+) printf( ); printf(%lfn,Xi);else if (serial_number2=3)/第三题开始u=2.5;min_x=L/Gn2;F=P*u;D=T/min_x;aW=F;aE=0;m=2*D+F;n=2*D;for(i=0;iGn2-1;i+)ai=-aW;ci=-aE;for(i=0;iGn2;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn2-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;TDMA2(a,b,c,f,X); printf(Result:X); printf(%d,Gn2); printf(=n); for (i=0;i=Gn2-1;i+) printf( ); printf(%lfn,Xi);elseprintf(No case is selected,please check out the input serial number.n);else if(serial_number1=4)/指数方法if(serial_number2=1)/第一题开始 u=0.1; min_x=L/Gn1; F=P*u; D=T/min_x; aW=0.03125*D+F; aE=0.03125*D; m=2*D*0.3125+F; n=2*D*0.3125; for(i=0;i4;i+) ai=0; ci=0; for(i=0;i5;i+) bi=0; fi=0; for(i=0;iGn1-1;i+) ai=-aW, ci=-aE; for(i=0;iGn1;i+) if(i=0) bi=-ci+m;fi=m*ProA; else if(i=Gn1-1) bi=-ai-1+n;fi=n*ProB; else bi=-ci-ai-1;fi=0; TDMA1(a,b,c,f,X); printf(Result:X); printf(%d,Gn1); printf(=n); for (i=0;i=Gn1-1;i+) printf( ); printf(%lfn,Xi);else if(serial_number2=2)/第二题开始u=2.5;min_x=L/Gn1;F=P*u;D=T/min_x;aW=0.03125*D+F;aE=0.03125*D;m=2*D*0.3125+F;n=2*D*0.3125;for(i=0;iGn1-1;i+)ai=-aW;ci=-aE;for(i=0;iGn1;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn1-1)bi=-ai-1+n;fi=n*ProB;elsebi=-ci-ai-1;fi=0;TDMA1(a,b,c,f,X);printf(Result:X); printf(%d,Gn1); printf(=n); for (i=0;i=Gn1-1;i+) printf( ); printf(%lfn,Xi); else if(serial_number2=3)/第三题开始u=2.5; min_x=L/Gn1;F=P*u;D=T/min_x;aW=0.03125*D+F;aE=0.03125*D;m=2*D*0.3125+F;n=2*D*0.3125;for(i=0;iGn2-1;i+)ai=-aW;ci=-aE;for(i=0;iGn2;i+)if(i=0)bi=-ci+m;fi=m*ProA;else if(i=Gn2-1)bi=-ai-1+n;fi=n*ProB;else bi=-ci-ai-1;fi=0;TDMA2(a,b,c,f,X);printf(Result:X); printf(%d,Gn2); printf(=n); for (i=0;i=Gn2-1;i+) printf( ); printf(%lfn,Xi);elseprintf(No case is selected,please check out the input serial number.n);else printf(ERROR:no case or method is selected,please check out the input serial number.n);(1) With the central differencing scheme:Results: u=0.1m/s with 5 grid nodes: u=2.5m/s with 5 grid nodes: u=2.5m/s with 20 grid nodes:Figures: u=0.1m/s with 5 grid nodes:图表 1 u=2.5m/s with 5 grid nodes:图表 2 u=2.5m/s with 20 grid nodes:图表 3Discussion:A small number of grid nodes can be competent to simulate the property of fluid while the flow velocity is low. As the flow rate increases, the number of nodes needs to be a corresponding increase, otherwise the calculation results will be distorted by serious error.The central differencing scheme is not applicable to large and complex problem.(2) With the upwind differencing scheme:Results: u=0.1m/s with 5 grid nodes: u=2.5m/s with 5 grid nodes: u=2.5m/s with 20 grid nodes:Figures: u=0.1m/s with 5 grid nodes:图表 4 u=2.5m/s with 5 grid nodes:图表 5 u=2.5m/s with 20 grid nodes:图表 6Discussion:The upwind differencing scheme can be used to simulate the one-dimensional flow characteristics because of the calculation results and the theoretical analysis values are consistent. (3) With the hybrid differencing scheme:Results: u=0.1m/s with 5 grid nodes: u=2.5m/s with 5 grid nodes: u=2.5m/s with 20 grid nodes:Figures: u=0.1m/s with 5 grid nodes:图表 7 u=2.5m/s with 5 grid nodes:图表 8 u=2.5m/s with 20 grid nodes:图表 9Discussion:The hybrid differencing scheme has different calculation accuracy to deal with different problems. When flow rate increases, this method has certain advantages. (4) With the p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论