




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数据结构的排序精彩跨越,完美升级本文由augusdi贡献doc文档各种排序算法排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法 对算法本身的速度要求很高。 而一般我们所谓的算法的性能主要是指算法的复杂度,一般用 O 方法来表示。在后面我将 给出详细的说明。对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。 我将按照算法的复杂度,从简单到难来分析算法。 第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为 O(N*N)(因为没 有 使用 word,所以无法打出上标和下标) 。 第二部分是高级排序算法,复杂度为 O(Log2(N)。这里我们只介绍一种算法。另外还有几 种 算法因为涉及树与堆的概念,所以这里不于讨论。 第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的) ,但是算法本身比较 奇特,值得参考(编程的角度) 。同时也可以让我们从另外的角度来认识这个问题。 第四部分是我送给大家的一个餐后的甜点一个基于模板的通用快速排序。由于是模板 函数 可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称) 。现在,让我们开始吧:一、简单排序算法 由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的 VC 环境 下运行通过。因为没有涉及 MFC 和 WINDOWS 的内容,所以在 BORLAND C+的平台上 应该也不会有什么 问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。 1.冒泡法: 这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡: #include void BubbleSort(int* pData,int Count) int iTemp; for(int i=1;i=i;j-) if(pDatajpDataj-1) iTemp = pDataj-1; pDataj-1 = pDataj;pData辣大叔酱板鸭j = iTemp; void main() int data = 10,9,8,7,6,5,4; BubbleSort(data,7); for (int i=0;i7;i+) coutdatai ; cout10,9,7,8-10,7,9,8-7,10,9,8(交换 3 次) 第二轮:7,10,9,8-7,10,8,9-7,8,10,9(交换 2 次) 第一轮:7,8,10,9-7,8,9,10(交换 1 次) 循环次数:6 次 交换次数:6 次其他: 第一轮:8,10,7,9-8,10,7,9-8,7,10,9-7,8,10,9(交换 2 次) 第二轮:7,8,10,9-7,8,10,9-7,8,10,9(交换 0 次) 第一轮:7,8,10,9-7,8,9,10(交换 1 次) 循环次数:6 次 交换次数:3 次上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交 换, 显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为 1+2+.+n-1。 写成公式就是 1/2*(n-1)*n。 现在注意,我们给出 O 方法的定义: 若存在一常量 K 和起点 n0, d 2.1精彩跨越,完美升级使当 n=n0 时,有 f(n)=K*g(n),则 f(n) = O(g(n)。 (呵呵,不 要说没 学好数学呀,对于编程数学是非常重要的! !) 现在我们来看 1/2*(n-1)*n,当 K=1/2,n0=1,g(n)=n*n 时,1/2*(n-1)*n=1/2*n*n=K*g(n)。 所以 f(n) =O(g(n)=O(n*n)。所以我们程序循环的复杂度为 O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的 有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都 会交换) , 复杂度为 O(n*n)。当数据为正序,将不会有交换。复杂度为 O(0)。乱序时处于中间状态。 正是由于这样的 原因,我们通常都是通过循环次数来对比算法。2.交换法: 交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。 #include void ExchangeSort(int* pData,int Count) int iTemp; for(int i=0;iCount-1;i+) for(int j=i+1;jCount;j+) if(pDatajpDatai) iTemp = pDatai; pDatai = pDataj; pDataj = iTemp; void main() int data = 10,9,8,7,6,5,4; ExchangeSort(data,7); for (int i=0;i7;i+) coutdatai ; cout9,10,8,7-8,10,9,7-7,10,9,8(交换 3 次) 第二轮:7,10,9,8-7,9,10,8-7,8,10,9(交换 2 次) 第一轮:7,8,10,9-7,8,9,10(交换 1 次) 循环次数:6 次 交换次数:6 次其他:第一轮:8,10,7,9-8,10,7,9-7,10,8,9-7,10,8,9(交换 1 次) 第二轮:7,10,8,9-7,8,10,9-7,8,10,9(交换 1 次) 第一轮:7,8,10,9-7,8,9,10(交换 1 次) 循环次数:6 次 交换次数:3 次从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样 也是 1/2*(n-1)*n,所以算法的复杂度仍然是 O(n*n)。由于我们无法给出所有的情况,所以 只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍 差) 。 3.选择法: 现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下) 这种方法类似我们人为的排序习惯: 从数据中选择最小的同第一个值交换, 在从省下的部分 中 选择最小的与第二个交换,这样往复下去。 #include void SelectSort(int* pData,int Count) int iTemp; int iPos; for(int i=0;iCount-1;i+) iTemp = pDatai; iPos = i; for(int j=i+1;jCount;j+) if(pDatajiTemp) iTemp = pDataj; iPos = j; pDataiPos = pDatai; pDatai = iTemp; void main() int data = 10,9,8,7,6,5,4; SelectSort(data,7); for (int i=0;i7;i+) coutdatai ;cout(iTemp=9)10,9,8,7-(iTemp=8)10,9,8,7-(iTemp=7)7,9,8,10(交换 1 次) 第二轮:7,9,8,10-7,9,8,10(iTemp=8)-(iTemp=8)7,8,9,10(交换 1 次) 第一轮:7,8,9,10-(iTemp=9)7,8,9, 彩跨越,完美升级10(交换 0 次) 循环次数:6 次 交换次数:2 次其他: 第一轮:8,10,7,9-(iTemp=8)8,10,7,9-(iTemp=7)8,10,7,9-(iTemp=7)7,10,8,9(交换 1 次) 第二轮:7,10,8,9-(iTemp=8)7,10,8,9-(iTemp=8)7,8,10,9(交换 1 次) 第一轮:7,8,10,9-(iTemp=9)7,8,9,10(交换 1 次) 循环次数:6 次 交换次数:3 次 遗憾的是算法需要的循环次数依然是 1/2*(n-1)*n。 所以算法复杂度为 O(n*n)。 我们来看他的交换。由于每次外层循环只产生一次交换(只有辣大叔酱板鸭一个最小值)。所以 f(n)=n 所以我们有 f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。4.插入法: 插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继 续下一张 #include void InsertSort(int* pData,int Count) int iTemp; int iPos; for(int i=1;i=0) & (iTemppDataiPos) pDataiPos+1 = pDataiPos; iPos-; pDataiPos+1 = iTemp; void main() int data = 10,9,8,7,6,5,4; InsertSort(data,7); for (int i=0;i7;i+) coutdatai ; cout9,10,8,7(交换 1 次)(循环 1 次) 第二轮:9,10,8,7-8,9,10,7(交换 1 次)(循环 2 次) 第一轮:8,9,10,7-7,8,9,10(交换 1 次)(循环 3 次) 循环次数:6 次 交换次数:3 次其他: 第一轮:8,10,7,9-8,10,7,9(交换 0 次)(循环 1 次) 第二轮:8,10,7,9-7,8,10,9(交换 1 次)(循环 2 次) 第一轮:7,8,10,9-7,8,9,10(交换 1 次)(循环 1 次) 循环次数:4 次 交换次数:2 次上面结尾的行为分析事实上造成了一种假象, 让我们认为这种算法是简单算法中最好的, 其 实不是, 因为其循环次数虽然并不固定,我们仍可以使用 O 方法。从上面的结果可以看出,循环的 次数 f(n)= 1/2*n*(n-1)=1/2*n*n。所以其复杂度仍为 O(n*n)(这里说明一下,其实如果不是为了展示 这些简单 排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是 O(n) (推导类似 选择法),但我们每次要进行与内层循环相同次数的=操作。正常的一次交换我们需要三 次= 而这里显然多了一些,所以我们浪费了时间。最终,我个人认为,在简单排序算法中,选择法是最好的。二、高级排序算法: 高级排序算法中我们将只介绍这一种, 同时也是目前我所知道 (我看过的资料中) 的最快的。它的工作看起来仍然象一个二叉树。首先我们选择一个中间值 middle 程序中我们使用数组 中间值,然后 把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对 两边分别使 用这个过程(最容易的方法递归)。1.快速排序: #include void run(int* pData,int left,int 跨越,完美升级right) int i,j; int middle,iTemp; i = left; j = right; middle = pData(left+right)/2; /求中间值 do while(pDataimiddle) & (imiddle) & (jleft)/从右扫描大于中值的数 j-; if(i=j)/找到了一对值 /交换 iTemp = pDatai;pDatai = pDataj; pDataj = iTemp; i+; j-; while(i=j);/如果两边扫描的下标交错,就停止(完成一次)/当左边部分有值(leftj),递归左半边 if(lefti),递归右半边 if(righti) run(pData,i,right); void QuickSort(int* pData,int Count) run(pData,0,Count-1); void main() int data = 10,9,8,7,6,5,4; QuickSort(data,7); for (int i=0;i7;i+)coutdatai ; coutn; 这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想 的情况 1.数组的大小是 2 的幂,这样分下去始终可以被 2 整除。假设为 2 的 k 次方,即 k=log2(n)。 2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。 第一层递归,循环 n 次,第二层循环 2*(n/2). 所以共有 n+2(n/2)+4(n/4)+.+n*(n/n) = n+n+n+.+n=k*n=log2(n)*n 所以算法复杂度为 O(log2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的 middle 都是最小值或最大值, 那么他将变 成交换法 (由于使用了递归, 情况更糟) 但是你认为这种情况发生的几率有多大?呵呵, 。 你完全 不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。 如果你担心这个问题,你可以使用堆排序,这是一种稳定的 O(log2(n)*n)算法,但是通常情 况下速度要慢 于快速排序(因为要重组堆)。三、其他排序 1.双向冒泡: 通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。 代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。 写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。 反正我认为这是一段有趣的代码,值得一看。 #include void Bubble2Sort(int* pData,int Count) int iTemp; int left = 1; int right =Count -1; int t; do /正向的部分 for(int i=right;i=left;i-) if(pDataipDatai-1) iTemp 辣大叔酱板鸭= pDatai; pDatai = pDatai-1; pDatai-1 = iTemp; t = i; left = t+1;/反向的部分for(i=left;iright+1;i+) if(pDataipDatai-1) iTemp = pDatai; pDatai = pDatai-1; pDatai-1 = iTemp; t = i; right = t-1; while(left=right); void main() int data = 10,9,8,7,6,5,4; Bubble2Sort(data,7); for (int i=0;i7;i+) coutdatai ; coutn; 2.SHELL 排序这个排序非常复杂,看了程序就知道了。 首先需要一个递减的步长,这里我们使用的是 9、5、3、1( 完美升级最后的步长必须是 1)。 工作原理是首先对相隔 9-1 个元素的所有内容排序,然后再使用同样的方法对相隔 5-1 个元 素的排序 以次类推。 #include void ShellSort(int* pData,int Count) int step4; step0 = 9; step1 = 5; step2 = 3; step3 = 1;int iTemp; int k,s,w; for(int i=0;i4;i+) k = stepi; s = -k; for(int j=k;jCount;j+) iTemp = pDataj; w = j-k;/求上 step 个元素的下标 if(s =0) s = -k; s+; pDatas = iTemp; while(iTemp=0) & (w=Count) pDataw+k = pDataw; w = w-k; pDataw+k = iTe mp; void main() int data = 10,9,8,7,6,5,4,3,2,1,-10,-1; ShellSort(data,12); for (int i=0;i12;i+) coutdatai ; coutn; 呵呵,程序看起来有些头疼。不过也不是很难,把 s=0 的块去掉就轻松多了,这里是避免使用 0 步长造成程序异常而写的代码。这个代码我认为很值得一看。 这个算法的得名是因为其发明者的名字 D.L.SHELL。依照参考资料上的说法:“由于复杂的 数学原因 避免使用 2 的幂次步长,它能降低算法效率。”另外算法的复杂度为 n 的 1.2 次幂。同样因 为非常复杂并 “超出本书讨论范围”的原因(我也不知道过程),我们只有结果了。四、基于模板的通用排序: 这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。 MyData.h 文件 / class CMyData public: CMyData(int Index,char* strData); CMyData(); virtual CMyData();int m_iIndex; int GetDataSize() return m_iDataSize; ; const 辣大叔酱板鸭char* GetData() return m_strDatamember; ; /这里重载了操作符: CMyData& operator =(CMyData &SrcData);bool operator (CMyData& data );private: char* m_strDatamember; int m_iDataSize; ; /MyData.cpp 文件 / CMyData:CMyData(): m_iIndex(0), m_iDataSize(0), m_strDatamember(NULL) CMyData:CMyData() if(m_strDatamember != NULL) delete m_strDatamember; m_strDatamember = NULL; CMyData:CMyData(int Index,char* strData): m_iIndex(Index), m_iDataSize(0), m_strDatamember(NULL) m_iDataSize = strlen(strData); m_strDatamember = new charm_iDataSize+1; strcpy(m_strDatamember,strData); CMyData& CMyData:operator =(CMyData &SrcData) m_iIndex = SrcData.m_iIndex; m_iDataSize = SrcData.GetDataSize(); m_strDatamember = new charm_iDataSize+1; strcpy(m_strDatamember,SrcData.GetData(); return *this; bool CMyData:operato
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药学专业试题及答案软件
- 河北省唐山市2025-2026学年高三上学期摸底演练化学试卷(含答案)
- 甘肃省金太阳2026届高三9月开学联考(26-1002C)政治(含答案)
- 黑龙江省佳木斯市桦川县2026届九年级上学期开学考试数学试卷(含答案)
- 闵行区自制鱼池施工方案
- 乐山塑胶操场施工方案
- 祖国生日庆祝致辞模板
- 会计年终工作总结
- 辽宁省大连市滨城高中联盟2024-2025学年高二上学期期中物理试卷(含解析)
- 山西省阳泉市部分学校2025-2026学年上学期第一次月考八年级地理试卷
- 云梯车作业交底
- 实验实训室建设与管理实施办法
- 第三方工程验收报告范本
- 通天河水电规划
- 大学生心理健康教育之新生入学适应-课件
- 盟史简介12.10.18课件
- 高级家政服务员考试(重点)题库300题(含答案解析)
- 2023年04月湖北经济学院创新创业学院招聘1名孵化器日常管理专员笔试参考题库答案解析
- 法律方法阶梯
- 教案课程与教学论(王本陆).课件
- 2023年理赔专业技术职务任职资格理赔员定级考试试卷C车险理算核赔高级
评论
0/150
提交评论