物质结构元素周期律复习总结.doc_第1页
物质结构元素周期律复习总结.doc_第2页
物质结构元素周期律复习总结.doc_第3页
物质结构元素周期律复习总结.doc_第4页
物质结构元素周期律复习总结.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一原子结构核电荷数、核内质子数及核外电子数的关系 核电荷数核内质子数原子核外电子数注意: (1) 阴离子:核外电子数质子数所带的电荷数阳离子:核外电子数质子数所带的电荷数(2)“核电荷数”与“电荷数”是不同的,如Cl的核电荷数为17,电荷数为1质量数 用符号A表示将某元素原子核内的所有质子和中子的相对质量取近似整数值相加所得的整数值,叫做该原子的质量数说明 (1)质量数(A)、质子数(Z)、中子数(N)的关系:AZ + N (2)符号X的意义:表示元素符号为X,质量数为A,核电荷数(质子数)为Z的一个原子例如, Na中,Na原子的质量数为23、质子数为11、中子数为12原子核外电子运动的特征(1)当电子在原子核外很小的空间内作高速运动时,没有确定的轨道,不能同时准确地测定电子在某一时刻所处的位置和运动的速度,也不能描绘出它的运动轨迹在描述核外电子的运动时,只能指出它在原子核外空间某处出现机会的多少(2)描述电子在原子核外空间某处出现几率多少的图像,叫做电子云此法中的小黑点表示的意义是:离核近的地方电子云密度大,离核远的地方电子云密度小;说明在离核近的地方单位体积内电子出现的机会多,离核远的地方单位体积内电子出现的机会少。(3)在通常状况下,氢原子的电子云呈球形对称。在离核越近的地方电子云密度越大,离核越远的地方电子云密度越小掌握核外电子运动的特征以及核外电子排布的基本规律。1核外电子排布与能量关系 电子离核距离: 近 远电子能量: 低 高2核外电子的分层排布 核外电子层能量不同电子层离核距离: 近 远电子能量: 低 高电子层数(n): 1 2 3 4 5能量递增 符号 K L M N O 小结:电子层序数(n)1234567电子层符号KLMNOPQ最多容纳电子数(2n2)电子能量由 低 高电子离核远近由 近 远 电子排布规律 能量最低原理:先排满低能量电子层,再依次排布在能量较高的电子层中。 各电子层最多容纳的电子数:2n2 最外层电子数8 次外层电子数18 倒数第三层电子数32二.元素周期律:(1)概念:元素的性质随着元素原子序数的递增而呈周期性的变化,这个规律叫元素周期律。(2)实质:元素性质的周期性变化是元素原子核外电子排布周期性变化的必然结果。(3)表现形式:核外电子排布最外层电子数由1递增至8(若K层为最外层则由1递增至2)而呈现周期性变化。原子半径原子半径由大到小(稀有气体元素除外)呈周期性变化。原子半径由 电子层数和核电荷数多少决定。主要化合价最高正价由+1递变到+7,从中部开始有负价,从-4递变至-1。(稀有气体元素化合价为零),呈周期性变化。元素主要化合价由元素原子的最外层电子数决定,一般存在下列关系:最高正价数最外层电子数元素及化合物的性质同一个周期内的元素,随原子序数的递增金属性渐弱,非金属性渐强,最高氧化物的水化物的碱性渐弱,酸性渐强,呈周期性变化。这是由于在同一个周期内的元素,电子层数相同,最外层电子数逐渐增多,核对外层电子引力渐强,使元素原子失电子渐难,得电子渐易,故有此变化规律。 最高正价数最外层电子数 |最低负价|最高正价8 O、F一般无正价。(氧只跟F结合时,才显正价,如OF2中氧呈2价) 除个别元素外(如N) 原子序数为奇数的元素,其正常化合价为奇数价; 原子序数为偶数的元素,其正常化合价为偶数价; 最外层电子数为奇数,其正常化合价为一系列连续的奇数(P:+3、+5); 最外层电子数为偶数,其正常化合价为一系列连续的偶数(S:+2、+4、+6);(2)元素的金属性、非金属性与在周期表中位置的关系:同一周期元素从左至右,随着核电荷数增多,原子半径减小,失电子能力减弱,得电子能力增强a金属性减弱、非金属性增强;b金属单质与酸(或水)反应置换氢由易到难;c非金属单质与氢气化合由难到易(气态氢化物的稳定性增强);d.最高价氧化物的水化物的酸性增强、碱性减弱同一主族元素从上往下,随着核电荷数增多,电子层数增多,原子半径增大,失电子能力增强,得电子能力减弱a金属性增强、非金属性减弱;b金属单质与酸(或水)反应置换氢由难到易。c非金属单质与氢气化合由易到难(气态氢化物的稳定性降低);d最高价氧化物的水化物的酸性减弱、碱性增强1。元素的金属性和非金属性强弱的判断依据 a单质与水(或酸)反应的难易 b最高价氧化物对应水化物的碱性强弱 c金属的相互置换(1)金属性 d根据它们在周期表的位置 e依据金属活动顺序表 f用电化学的方法(构成原电池) g金属阳离子的氧化性强弱 a单质与氢化合的难易及氢化物的热稳定性 b最高价氧化物对应水化物的酸性强弱(2)非金属性 c非金属的相互置换 d根据它们在周期表的位置 e非金属阴离子的还原性强弱骨灰盒2微粒半径大小的比较规律电子层数: 相同条件下,电子层越多,半径越大。判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。最外层电子数 相同条件下,最外层电子数越多,半径越大。微粒半径的比较 1、同周期元素的原子核电荷数越大的半径越小。(稀有气体除外)如:NaMgAlSiPSCl.2、同主族元素的原子电子层数多的半径越大。如:LiNaKRbCs具体规律: 3、同主族元素的离子半径随核电荷数的增大而增大。如:F-Cl-Br- Na+Mg2+Al3+记忆:阴前阳下,径小序大5、同种元素的各种粒子,核外电子数越多的半径越大。如FeFe2+Fe3+另外还需注意:电子层数多的阴离子半径一定大于电子层数少的阳离子半径;而电子层数多的阳离子半径则不一定大于电子层数少的阴离子半径。三.元素周期表:(1)编排原则 按原子序数递增的顺序从左到右、从上到下编排。将电子层数相同的各种元素从左到右排成横行(周期),共有 7 横行将最外层电子数相同的元素按电子层数递增的顺序从上到下排成纵行,共有18 纵行。(2)元素周期表的结构元素周期表的结构位置与结构的关系周期周期序数元素的种数1.周期序数原子核外电子层数2.对同主族(nA族)元素,若n2,则该主族某一元素的原子序数与上一周期元素的原子序数的差值为上一周期的元素种数;若n3,则该主族某一元素的原子序数与上一周期元素的原子序数的差值为该周期的元素种数。短周期第一周期2第二周期8第三周期8长周期第四周期18第五周期18第六周期32第七周期不完全周期族主族A族A族A族A族A族A族A族由长周期元素和短周期元素共同构成的族。最外层电子数=主族序数=价电子数零 族最外层电子数均为8个(He为2个除外)副族B族B族B族B族B族B族B族只由长周期元素构成的族最外层电子数一般不等于族序数(第B族、B族除外),最外层电子数只有12。第族有三列元素归纳记忆:七主七副两特殊,三短三长一不全元素周期表结构的记忆方法如下:横行叫周期,共有七周期;三四分长短,第七不完全;一八依次现,一零再一遍;竖行称作族,总共十六族;族最特殊,三行是一族;二三分主副,先主后副族;镧锕各十五,均属B族;构位性一体,相互可推断。(5)元素周期表的应用:预测元素的性质(由递变规律推测):给出一种不常见的主族元素(如砹、碲、铋、铅、铟、镭、铯等),或尚未发现的主族元素,推测该元素及其单质或化合物所具有的性质。解答的关键是根据该元素所在族的熟悉的元素的性质,根据递变规律,加以推测判断。 活泼的非金属位于周期表右上角; 活泼的金属位于周期表左下角; 金属非金属元素交界处是两性元素区,凡周期序数与主族序数相同元素均为典型两性金属元素。Be(2,A) Al(3,A) Ge(4,A) 按周期表的位置寻找元素,启发人们在一定区域内寻找新物质(农药、半导体、催化剂等)。如:催化剂通常在 过渡 元素及其化合物中寻找,半导体材料通常在 金属与非金属的分界处的 元素中寻找,研制新农药通常在 氟、氯、氮、磷等 元素的化合物中进行研究。练习:在元素周期表里,金属元素与非金属元素分界线附近,能找到-A A.制半导体的元素B.制农药的元素 C.制催化剂的元素D.制耐高温合金的元素若主族元素族序数为m,周期数为n,则:当mn1时,为非金属元素,其最高价氧化物的水化物显酸性。(记忆:横短竖长即为非)无论同周期还是同族中,mn值越小,元素的金属性越强,其对应氧化物的水化物的碱性越强;mn值越大,元素的非金属性越强,其最高价氧化物对应的水化物的酸性越强。对角线规则:A BB 周期表中A、B两元素若处在如左图所示的位置,则性质相似。如Be 和Al单质在常温下均能被浓H2S04钝化;BeO和Al203均显示两性;A1C13 B和BeCl2均为共价化合物等。序差规律:、A、B两元素分属同周期的A族和A族,若A的原子序数为x,则B的原子序数可能为 : x+1 (二、三周期) x+11 (四、五周期) x+25 (六周期)2、核素和同位素的区别和联系:(1)核素:具有一定数目的质子和一定数目的中子的一种原子。如H、H、C、C等各称为一种核素。(2)同位素:同一元素的不同核素之间互称同位素。 160、17O、180是氧元素的三种核素,互为同位素。(3)元素、核素、同位素之间的关系如下图所示:许多元素具有多种同位素: 可以利用H、H、;利用U制造原子弹和作核反应堆的燃料;利用放射性同位素给金属制品探伤,抑制马铃薯和洋葱等发芽,延长贮存保鲜期。在医疗方面,可以利用某些核素放射出的射线治疗癌肿等。(4)同位素的特点、结构上,质子数相同而中子数不同;、性质上,化学性质几乎完全相同,只是某些物理性质略有不同;、存在上,在天然存在的某种元素里,不论是游离态还是化合态,同位素的原子个数百分比一般是不变的(即丰度一定)。 同种元素,可以有若干种不同的核素。至今已发现了110种元素,但发现了核素远多于110种。核电荷数相同的不同核素,虽然它们的中子数不同,但是属于同一种元素。同位素是同一元素的不同核素之间的互相称谓,不指具体的原子。符号X既表示一个具体的原子,又表示一种核素。17O是一种核素,而不是一种同位素。160、17O、180是氧元素的三种核素,互为同位素。说明 (1)只有同一种元素的不同核素之间才能互称同位素即同位素的质子数必定相同,而中子数一定不同,质量数也不同(2)由于一种元素往往有多种同位素,因此同位素的种数要多于元素的种数(3)同位素的特性:物理性质不同(质量数不同),化学性质相同;在天然存在的某种元素里,不论是游离态还是化合态,各种同位素所占的原子个数的百分比是不变的(4)氢元素的三种同位素:氕H(特例:该原子中不含中子)、氘H (或D)、氚H(或T)(5)重要同位素的用途:H、H 为制造氢弹的材料; U为制造原子弹的材料和核反应堆燃料(1)、原子的真实质量:原子的真实质量也称绝对质量,单位 kg。是通过精密的实验测得的,原子的真实质量很小,使用极不方便(如:1个126C原子质量是1.99271026kg)。所以科学上,一般不直接使用原子的真实质量,而使用原子的相对质量 (2)、相对质量:1个粒子的绝对质量与一个126C原子绝对质量的1/12(1.66061027kg)的比值。单位 1。 注: 粒子:可以原子、质子、中子、电子等微观粒子。 质子、中子的相对质量约为1。如果该粒子为原子,则为相对原子质量注:相对原子质量和原子质量区别 相对原子质量是比值。 原子质量单位 kg 两者在数值上也不同。(3)、核素的相对原子原子质量:同位素的相对原子质量是指某种原子的相对质量,是通过各同位素原子的绝对质量分别与碳的绝对质量1/12的比值(即初中化学所学的相对原子质量。)(4)原子的质量数: 原子的质量数是指某元素的一种同位素原子的核中所含质子数和中子数之和,在实际使用中常代替同位素的相对原子质量,所以也叫做近似相对原子质量。 质量数质子相对质量中子相对质量A 质子数(Z)中子数(N) 注: 质量数与相对原子质量的区别: 概念含义不同。 质量数为整数,相对原子质量一般非整数。 在特定情况下,数值上可用质量数代替相对原子质量。需要注意的是元素无质量数。(5)、元素的相对原子质量(也称为平均相对原子质量)元素的相对原子质量是指某元素各种同位素的原子量与该同位素原子所占的原子个数百分比(丰度)的乘积之和;相对原子质量的计算: 元素的相对原子质量是按各种天然同位素原子所占的原子个数百分比求出的平均值。 =A1a1%+A2a2%+表示某元素的相对原子质量A1、A2 为同位素的相对原子质量a1%、a2% 为同位素的原子百分数或同位素原子的物质的量分数也就是元素周期表中所给的原子量的数值,一般情况下元素的原子量不会为整数。(6)元素的近似相对原子质量(即元素的近似平均相对原子质量)把上式中的同位素的原子量改为同位素的质量数进行计算,所得结果即为元素的近似原子量。氯元素的近似平均原子量为:3575.77%+3724.23%=35.48463几个概念辨析: 原子:组成单质和化合物的最小微粒,是化学反应中的最小微粒。定义:以12C原子质量的1/12(约1.6610-27kg)作为标准,其它原子的质量跟它比较所得的值。其国际单位制(SI)单位为一,符号为1(单位1一般不写)原子质量:指原子的真实质量,也称绝对质量,是通过精密的实验测得的。如:一个Cl2分子的m(Cl2)=2.65710-26kg。核素的相对原子质量:各核素的质量与12C的质量的1/12的比值。一种元素有几种同位素,就应有几种不同的核素的相对原子质量,相对原子质量 诸量比较: 如35Cl为34.969,37Cl为36.966。(原子量) 核素的近似相对原子质量:是对核素的相对原子质量取近似整数值,数值上与该核素的质量数相等。如:35Cl为35,37Cl为37。元素的相对原子质量:是按该元素各种天然同位素原子所占的原子百分比算出的平均值。如:Ar(Cl)=Ar(35Cl)a% + Ar(37Cl)b%元素的近似相对原子质量:用元素同位素的质量数代替同位素相对原子质量与其丰度的乘积之和。注意: 、核素相对原子质量不是元素的相对原子质量。、通常可以用元素近似相对原子质量代替元素相对原子质量进行必要的计算。小结:随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化:、原子最外层电子数呈周期性变化元素周期律 、原子半径呈周期性变化、元素主要化合价呈周期性变化、元素的金属性与非金属性呈周期性变化具体表现形式、按原子序数递增的顺序从左到右排列;编排依据元素周期律和 排列原则 、将电子层数相同的元素排成一个横行;元素周期表 、把最外层电子数相同的元素(个别除外)排成一个纵行。、短周期(一、二、三周期)七主七副两特殊三长三短一不全周期(7个横行) 、长周期(四、五、六周期)周期表结构 、不完全周期(第七周期)、主族(AA共7个)元素周期表 族(18个纵行) 、副族(BB共7个)、族(8、9、10纵行)、零族(稀有气体)同周期同主族元素性质的递变规律、核电荷数,电子层结构,最外层电子数、原子半径性质递变 、主要化合价、金属性与非金属性、气态氢化物的稳定性、最高价氧化物的水化物酸碱性四化学键(包括离子键 共价键 和 金属键,注意氢键不属于化学键)离子键 使阴、阳离子结合而成的静电作用,叫做离子键说明 (1)阴、阳离子间的静电作用包括静电排斥作用和吸引作用两个方面(2)阴、阳离子通过静电作用所形成的化合物,叫做离子化合物电子式 在元素符号的周围用小黑点(或)来表示原子最外层电子的式子,称做电子式电子式的几种表示方法: (1)原子的电子式:将原子的所有最外层电子数在元素符号的周围标出例如:氢原子( )、钠原子()、镁原子( )、铝原子( )、碳原子( )、氮原子()、硫原子()、氩原子()(2)离子的电子式: 阴离子:在书写阴离子的电子式时,须在阴离子符号的周围标出其最外层的8个电子(H为2个电子),外加方括号,再在括号外的右上角注明阴离子所带的电荷数例如S2的电子式为 2 ,OH的电子式为阳离子;对于简单阳离子,其电子式即为阳离子符号,如钠离子Na、镁离子Mg2等对于带正电荷的原子团,书写方法与阴离子类似,区别在于在方括号右上角标上阳离子所带的正电荷数如NH4电子式为(3)离子化合物的电子式:在书写离子化合物的电子式时,每个离子都要分开写如CaCl2的电子式应为(4)用电子式表示离子化合物的形成过程:先在左边写出构成该离子化合物的元素原子的电子式,标上“”,再在右边写出离子化合物的电子式例如,用电子式表示MgBr2 、Na2S的形成过程:说明 含有离子键的物质:周期表中I A、I A族元素分别与A、A族元素形成的盐;I A、A族元素的氧化物;铵盐,如NH4Cl、NH4NO3等;强碱,如NaOH、KOH等共价键 原子间通过共用电子对所形成的相互作用由共价键形成的化合物叫做共价化合物说明 (1)形成共价键的条件:原子里有未成对电子(即原子最外层电子未达8电子结构,其中H原子最外层未达2电子结构)各种非金属元素原子均可以形成共价键,但稀有气体元素原子因已达8电子(He为2电子)稳定结构,故不能形成共价键(2)共价键形成的表示方法:用电子式表示例如,用电子式表示HCl分子的形成过程:。注意a书写由原子构成的单质分子或共价化合物的电子式时,必须使分子中每个原子都要达到8电子结构(H原子为2电子结构)例如,HCl分子的电子式为。b由原子构成的分子与由阴、阳离子构成的离子化合物的区别如: HCl 、NaCl用结构式表示用短线(一根短线表示一对共用电子对)将分子中各原子连接,以表示分子中所含原子的排列顺序和结合方式如HC1、 NN、OCO等(3)共价键的存在情况:共价键既存在于由原子直接构成的单质分子(H2 、N2)或共价化合物分子(H2O 、CH4)中,也存在于多原子离子化合物中含有共价键的化合物不一定是共价化合物,也可能是离子化合物(NaOH 、Na2O2 );同时含有离子键和共价键的化合物必定是离子化合物,如NaOH、NH4C1等*4配位键:(1)形成过程(以NH4+为例):一个提供孤对电子,一个提供空轨道 (2)配位键属于共价键,但在指出物质中化学键的类型时必须单独指出。*5金属键:失去价电子的金属阳离子与在晶体内自由移动的价电子之间强烈的相互作用。化学键 相邻的原子之间强烈的相互作用叫做化学键说明 (1)化学键只存在于分子内直接相邻的原子之间,存在于分子之间的作用不属于化学键比如氢键(2)离子键、共价键都属于化学键(3)化学反应的过程,本质上就是旧化学键的断裂和新化学键的形成过程5非极性分子和极性分子非极性键 同一元素原子间通过共用电子对形成的一类共价键如C12分子中的ClC1键即为非极性键说明 非极性键是非极性共价键的简称非极性键只能存在于同种元素的原子之间极性键 不同种元素原子间通过共用电子对形成的一类共价键如HCl分子中的HC1键属于极性键说明 极性键是极性共价键的简称只要是不同种元素原子之间形成的共价键都属于极性键非极性分子 指整个分子的电荷分布均匀、分子结构对称的一类分子如H2、O2、N2等单质分子,以及CO2、CH4等均属于非极性分子极性分子 指分子中的电荷分布不均匀、结构不对称的一类分子如H2O、H2S、HCl分子等均属于极性分子键的极性与分子的极性键的极性分子的极性分类极性键和非极性键极性分子和非极性分子决定因素是否由同种元素的原子形成分子内电荷分布是否均匀,分子结构是否对称联系以非极性键结合的双原子分子必为非极性分子,如H2、C12、N2等以极性键结合的双原子分子一定是极性分子,如HCl、CO等以极性键结合的多原子分子,究竟是极性分子还是非极性分子,要根据该分子的具体分子结构然后确定如H2O的分子结构为“”型,属于极性分子;而CO2分子结构为直线形,属于非极性分子说明键有极性;分子不一定有极性ABn型化合物分子的极性的简易判断方法:若ABn中A元素的化合价数等于A元素所在族的序数,则ABn为非极性分子例如,CO2分子中C元素化合价为+4价,C元素属于A族,故CO2分子为非极性分子;CCl4分子中C元素化合价为+4价,C元素属于A族,故CCl4分子为非极性分子若ABn中A元素的化合价数不等于A元素所在族的序数,则ABn为极性分子例如,H2O分子中O元素化合价为2价,O元素属于A族,故H2O分子为极性分子;NH3分子中N元素化合价为3价,N元素属于A族,故NH3分子为极性分子分子间作用力 指在物质的分子与分子之间存在着的作用力说明 (1)荷兰物理学家范德华首先研究了分子间作用力,所以分子间作用力又叫范德华力;(2)分子间作用力要比化学键弱得多;(3)化学键的强弱影响着物质的化学性质;分子间作用力的大小对由分子构成的物质的物理性质如熔点、沸点、溶解度等有影响1、定义:相邻的两个或多个原子之间强烈的相互作用。离子键、定义:阴阳离子间通过静电作用所形成的化学键、存在:离子化合物(NaCl、NaOH、Na2O2等);离子晶体。、定义:原子间通过共用电子对所形成的化学键。不同原子间、存在:共价化合物,非金属单质、离子化合物中(如:NaOH、Na2O2);共价键 分子、原子、离子晶体。分子的极性共用电子对是否偏移存在2、分类 极性键 共价化合物化学键 非极性键 非金属单质相同原子间、分类:(孤对电子)双方提供:共价键共用电子对的来源单方提供:配位键 如:NH4+、H3O+金属键:金属阳离子与自由电子之间的相互作用。存在于金属单质、金属晶体中。决定分子的极性分子的空间构型决定分子的稳定性键能 3、键参数 键长 键角 4、表示方式:电子式、结构式、结构简式(后两者适用于共价键)定义:把分子聚集在一起的作用力分子间作用力(范德瓦尔斯力):影响因素:大小与相对分子质量有关。作用:对物质的熔点、沸点等有影响。、定义:分子之间的一种比较强的相互作用。分子间相互作用 、形成条件:第二周期的吸引电子能力强的N、O、F与H之间(NH3、H2O)、对物质性质的影响:使物质熔沸点升高。、氢键的形成及表示方式:F-HF-HF-H代表氢键。氢键 O OH H H H O H H、说明:氢键是一种分子间静电作用;它比化学键弱得多,但比分子间作用力稍强;是一种较强的分子间作用力。定义:从整个分子看,分子里电荷分布是对称的(正负电荷中心能重合)的分子。非极性分子 双原子分子:只含非极性键的双原子分子如:O2、H2、Cl2等。举例: 只含非极性键的多原子分子如:O3、P4等分子极性 多原子分子: 含极性键的多原子分子若几何结构对称则为非极性分子如:CO2、CS2(直线型)、CH4、CCl4(正四面体型)极性分子: 定义:从整个分子看,分子里电荷分布是不对称的(正负电荷中心不能重合)的。举例 双原子分子:含极性键的双原子分子如:HCl、NO、CO等3常见元素微粒结构特点稀有气体元素原子的电子层结构与同周期的非金属元素的阴离子的电子层结构相同,与下一周期的金属元素形成的阳离子的电子层结构相同。如:(1)核外有2个电子微粒(与He原子电子层结构相同的离子):H-、Li+、B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论