




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
单元复习课第一章 类型一 集合的运算 典例1 1 2015 全国卷 已知集合a x x 3n 2 n n b 6 8 10 12 14 则集合a b中的元素个数为 a 5b 4c 3d 2 2 2016 贵阳高一检测 设集合a x n 1 x 3 b 2 b m a 则满足条件的集合m的个数为 a 1b 2c 3d 4 解析 1 选d 因为a 2 5 8 11 14 17 b 6 8 10 12 14 所以a b 8 14 2 选d a x n 1 x 3 0 1 2 又b m a 故m 2 2 0 2 1 2 0 1 共4个 规律总结 集合基本运算的方法 1 定义法或venn图法 集合是用列举法给出的 运算时可直接借助定义求解 或把元素在venn图中表示出来 借助venn图观察求解 2 数轴法 集合是用不等式 组 给出的 运算时可先将不等式在数轴中表示出来 然后借助数轴求解 巩固训练 设全集u r m m 方程mx2 x 1 0有实数根 n n 方程x2 x n 0有实数根 求 m n 解析 当m 0时 x 1 即0 m 当m 0时 1 4m 0 即m 且m 0 所以m 所以 m m m 而对于n 1 4n 0 即n 所以n n n 所以 m n x x 类型二 求函数的定义域 典例2 1 f x 3x 1 0的定义域是 2 2016 北京高一检测 已知函数y f x 1 定义域是 2 3 则y f 2x 1 的定义域是 a b 1 4 c 5 5 d 3 7 解析 1 选d 由题意得 解得x 1且x 2 选a 2 x 3 则 1 x 1 4 故 1 2x 1 4 解得0 x 规律总结 函数定义域的类型及相应的求解方法 1 给出函数解析式的 函数的定义域是使解析式有意义的自变量的取值集合 2 实际问题 求函数的定义域既要考虑解析式有意义 还应考虑使实际问题有意义 3 复合函数问题 若f x 的定义域为 a b f g x 的定义域应由a g x b解出 若f g x 的定义域为 a b 则f x 的定义域为g x 在 a b 上的值域 巩固训练 1 函数f x 的定义域是 2 已知函数f x 求函数的定义域 求f 1 f 12 的值 解析 1 由题意知x 1 0 且 x x 0 解得x 0 即函数的定义域是 0 答案 0 2 由题意知 x 1 0且x 4 0 即x 4且x 1 从而函数定义域为 4 1 1 类型三 函数解析式的求法 典例3 1 已知f 2x 1 x2 x 则f x 2 已知f x 2f x 3x 2 求f x 的解析式 解析 1 设2x 1 t 则x 答案 2 因为f x 2f x 3x 2 以 x代x得f x 2f x 3x 2 两式联立解得f x 3x 规律总结 求函数解析式的题型与相应的方法 1 已知形如f g x 的表达式求f x 的表达式 使用换元法或配凑法 2 已知函数的类型 往往是一次或二次函数 使用待定系数法 3 含f x 与f x 或f x 与f 使用解方程组法 4 已知一个区间的解析式 求另一个区间的解析式 可用奇偶性转移法 巩固训练 二次函数f x 满足f x 1 f x 2x 且f 0 1 求f x 的解析式 解析 设二次函数f x ax2 bx c a 0 因为f 0 1 所以c 1 把f x 的表达式代入f x 1 f x 2x 有a x 1 2 b x 1 1 ax2 bx 1 2x 所以2ax a b 2x 所以a 1 b 1 所以f x x2 x 1 类型四 函数的图象及性质 典例4 1 已知函数f x 3x 2 x 1 2 则该函数的最大值为 最小值为 2 2016 兰州高一检测 函数f x 是定义在r上的偶函数 已知当x 0时 f x x2 4x 3 求函数f x 的解析式 作出函数f x 的图象 并写出函数f x 的单调递增区间 求f x 在区间 1 2 上的值域 解析 1 设x1 x2是区间 1 2 上的任意两个实数 且x10 于是f x2 f x1 0 即f x2 f x1 所以 函数f x 3x 2是区间 1 2 上的增函数 因此 函数f x 3x 2在区间 1 2 的两个端点上分别取得最小值与最大值 即当x 1时取得最小值 最小值是 1 在x 2时取得最大值 最大值是8 答案 8 1 2 因为函数f x 是定义在r上的偶函数 所以对任意的x r都有f x f x 成立 所以当x 0时 x 0 即f x f x x 2 4 x 3 x2 4x 3 所以f x 图形如下图所示 函数f x 的单调递增区间为 2 0 和 2 写成开区间也可以 由 知函数f x 在 1 0 上单调递增 所以f 1 f x f 0 即0 f x 3 在区间 0 2 上单调递减 所以f 2 f x f 0 即 1 f x 3 所以函数f x 在区间 1 2 上的值域为 1 3 规律总结 1 作函数图象的方法 1 描点法 求定义域 化简 列表 描点 连光滑曲线 2 变换法 熟知函数的图象的平移 伸缩 对称 翻转 2 函数单调性的应用 1 正向应用 若y f x 在给定区间上是增函数 则当x1x2时 f x1 f x2 2 逆向应用 若y f x 在给定区间上是增函数 则当f x1 f x2 时 x1 x2 巩固训练 已知函数f x 的解析式为 f x 1 求f 1 的值 2 画出这个函数的图象 3 求f x 的最大值 解析 1 因为 1 所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 溶解乙炔生产工节假日前安全考核试卷含答案
- 半导体分立器件和集成电路装调工节假日前安全考核试卷含答案
- 印染前处理工节假日前安全考核试卷含答案
- 铸管工节假日前安全考核试卷含答案
- 基础教育课程改革方案
- 2025-2030动力锂电池回收体系构建与循环经济价值挖掘报告
- 2025-2030动力电池硅碳复合负极材料膨胀抑制技术发展评估报告
- 2025-2030动力电池硅基负极产业化进度与供应链安全评估报告
- 2025-2030动力电池梯次利用行业标准缺失经济性评估及商业模式创新研究报告
- 2025-2030动力电池梯次利用市场培育与价值链重构战略咨询报告
- QGDW11059.2-2018气体绝缘金属封闭开关设备局部放电带电测试技术现场应用导则第2部分特高频法
- 公司博士创新站管理制度
- 小学大队委竞选笔试题目及答案
- CJ/T 514-2018燃气输送用金属阀门
- 电费代付款协议书
- 环保型氟硅橡胶鞋垫行业跨境出海项目商业计划书
- 智能语音识别技术原理与应用课件
- 2025年公共营养师考试题及答案
- 2024年09月山东枣庄市妇幼保健院青年就业见习拟录用笔试历年专业考点(难、易错点)附带答案详解
- 2025年长沙卫生职业学院单招职业技能测试题库及答案1套
- 淋巴瘤PET-CT及PET-MR显像临床应用指南(2025版)解读课件
评论
0/150
提交评论