1金属塑性变形物理基础-位错理论.ppt_第1页
1金属塑性变形物理基础-位错理论.ppt_第2页
1金属塑性变形物理基础-位错理论.ppt_第3页
1金属塑性变形物理基础-位错理论.ppt_第4页
1金属塑性变形物理基础-位错理论.ppt_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1位错理论 1 1位错概念的引人1 2位错原子模型和柏氏矢量1 3位错的应力场和应变能1 4位错的运动和晶体的塑性变形1 5位错在应力场中的受力1 6位错间的交互作用1 7位错与溶质原子的交互作用1 8位错的交割1 9位错的增殖与塞积1 10金属晶体中的位错 1 1位错概念的引人实验发现 晶体塑性变形后表面上出现明显的滑移台阶 解释塑性变形1 1 1经典塑性变形理论认为滑移台阶是理想的完整晶体在切应力作用下 上 下两半晶体作刚性整体移动而造成的 图1 1所示 原子从一个平衡位置移到下一个平衡位置时 切应力的变化为 图1 1 设 m 化简得 m 理想晶体的临界切应力 一般工程用金属的切变模量G为104 105N mm2 m应该为103 104N mm2 数量级 而一般纯金属单晶体的临界切应力只有 10 0 1 N mm2 由此可见 理论计算值与实测值相差很大 如Al计算值为4 3 103N mm2 实测值为0 8N mm2 理论值为实测值的5400倍 Zn计算值为6 0 103N mm2 而实测值为0 18N mm2 理论值约为实测值的34000倍 Fe理论计算为13 5 103N mm2 实测值为17N mm2 理论值约为实测值的800倍 人们放弃了经典理论 设想滑移是一个逐步进行的过程 1 1 2位错理论1925年 R Becker提出了一个假设 认为由于真实晶体中有热应力的存在 热运动产生了各种频率的弹性波向各个方向传播 可能在晶体中造成局部的应力峰 外加应力 应力峰 理论强度 得到 m aT此式只说明晶体的强度随温度的升高而减弱 而未说明晶体强度的差异 后来 E Orowan对此理论进行了修正 1 晶体中存在结构上的缺陷 2 由热运动可能发生应力的反向运动 3 考虑到硬化因素 提高强度 二十年代初到三十年代中说明以下几点 1 晶体易产生滑移 2 使晶体产生滑移应力与温度关系不大 3 晶体表面上的滑移痕迹并不都是从晶体的一边贯通到另一边 而是有时终止在晶体的中部 1934年 提出了位错的概念 1947年低碳钢的屈服效应 位错理论得到了很大发展 1950年以后 用电镜直接观察到位错 至此 位错的存在才最终得到间接证明 从此以后 位错理论得以迅速发展 它是一门很重要的基本理论 1 2位错模型和柏氏矢量1 2 1位错的分类 刃型位错其特征刃型位错不一定是直线 也可以是折线 刃型位错有一多余的半原子面 滑移面只有一个 位错周围的点阵发生弹性畸变 既有切应变 也有正应变 滑移线的移动方向与滑移方向平行 螺型位错特征螺型位错一定是一条直线 螺型位错原子呈轴对称 其滑移面是不定的 螺型位错周围的点阵发生弹性畸变 只有平行于位错线的切应变 无正应变 滑移线的移动方向与滑移方向垂直 混合位错不论那种位错 当它们扫过滑移面到达表面时 晶体产生滑移 1 2 2柏氏矢量准确简便描述位错的性质其作用 判断位错类型 估算位错应变能 分析位错反应等 1 柏氏矢量的确定 柏氏回路 2 柏氏矢量的性质一条位错线 只有一个柏氏矢量 汇集一点的位错线 它们的柏氏矢量和为零 一根位错线不能终止在晶体内部 只能终止在晶体表面 位错环b 1 2 3位错密度 描述位错多少的参数 1 定义 单位体积中位错的总长度 cm cm3 2 位错的形成 液态结晶时形成 晶体经过塑性变形回复和再结晶及其它热处理 位错的密度变化 3 位错的观察和测量薄膜透射技术和观察试样表面的位错露头 1 3位错的应力场和应变场1 3 1位错的应力场其作用 位错的应变能 线张力 相互作用 假设 各向异性 不连续并具有点阵结构的晶体均匀连续的弹性介质 适用范围 位错中心区域以外的区域 不适用于错排严重的位错中心区域 1 螺型位错应力场 是一个纯切应力场 2 刃型位错应力场有正应力也有切应力 在滑移面上 正应力为零 切应力为最大 滑移面上方 x轴向上的正应力为压应力 1 3 2位错应变能 因位错使晶体增加的内能 位错的应变能可分为两部分 一部分E 位错中心的应变能 另一部分E0 位错中心以外弹性应变能 即E总 E E0 一般E 为E总的10 15 可忽略 此时 位错应变能一般指E0 它可通过在晶体内 制得 一个位错所作的功求得 E螺 E刃 则E刃 E螺 一般 取0 3 所以E螺 E刃混合位错E混 1 cos2 ln 式中 混合位错柏氏矢量与位错线之间的夹角R0 位错中心区域的半径R 位错应力场遍及范围的半径 一般为10 4cmb 为点阵常数 这时单位长度的位错线应变能为 E K Gb2式中K为比例常数 一般为0 5 1 可知 E与b的平方成正比 bE 位错越稳定 1 3 3位错的线张力定义 每增加单位长度的位错线所作的功或增加的位错能 因此位错线张力T与位错能在数值上相等 即有T KGb2当位错线为直线时K 1 当位错线弯曲时 K 0 5 1 4位错的运动及晶体的塑性变形晶体在宏观上的塑性变形是它在微观上位错运动的结果 位错的运动方式有两种 滑移运动 保守运动 晶体体积不变 攀移运动 非保守运动 晶体体积变化 1 4 1位错的滑移运动 1 刃位错的滑移运动如1 2图所示 若位错线上的原子沿切应力方向移动不到一个原子间距 周围其它原子稍作调整 多余半原子面和位错线就可以向前移动一个原子间距 可见位错移动具有易动性 图1 2示出了位错由晶体的一端扫到另一端 2 螺位错的滑移运动如图所示位错线上的原子只需在切应力作用下向前移动一个原子间距的分数倍的距离 位错线可以向左移动一个原子间距 由上述位错的滑移过程可知 1 位错滑移具有移动性 相同之处 2 刃位错 位错线的滑移方向与柏氏矢量平行 螺位错 位错线的滑移方向与柏氏矢量垂直 3 螺位错可以进行交滑移 不同之处 交滑移 螺位错在几个滑移面上沿一个滑移方向进行的滑移 3 点阵阻力位错滑移受到的阻力 应力场 晶体内其它缺陷 点阵阻力 克服晶格点阵的位垒 由此式可知 1 晶体滑移时所需的切应力是低的 与实测值的临界切应力值近似 2 滑移面间距a越大 柏氏矢量b越小 阻力越小 3 位错宽度越小 阻力越大 1 4 2刃位错的攀移运动其攀移运动是通过多余半原子的扩展或收缩来实现的 正攀移 位错线上的原子或 空位 离开或 进入 位错线的结果 负攀移 位错线上的间隙原子 或空位 进入 或离开 位错线的结果 位错线成为空位的发源地或陷井 1 位错攀移运动的条件 温度 位错的攀移要靠晶体中空位或间隙原子的扩散来实现 因此应在较高温度下 空位或间隙原子具有足够扩散激活能才能进行 2 攀移的驱动力渗透力 晶体中不平衡空位浓度会促进位错的攀移 正应力 垂直于多余半原子面的正应力使晶体的体积变化 促进位错作攀移运动 1 4 3位错的滑移运动和晶体的塑性变形设一晶体的滑移面积为A 高为H 如位错从一端扫到另一端 产生一个柏氏矢量b的切位移 则有切应变 b H如果位错扫过的面积为A 没有扫过晶体的整个滑移面 这时的位移量为A b A 所以这时的切应变 1 5位错在应力场中的受力晶体塑变是其内部位错滑移的结果 位错运动 一是受外加应力场驱使 二是晶体内其它位错的应力场的驱使 将 作用于位错线上驱使它运动的力 定义为位错受力 目的 可以判断位错运动方向 讨论位错间相互作用的基础 应力场对位错的作用力外力使晶体变形所作的功与位错受力运动所作的功相等 W1 Lds A AW2 FLdsW1 W2所以F bF表示单位长度位错线上的受力 它的大小为 b 方向垂直于位错线 与位错线的运动方向一致 1 6位错间的交互作用1 6 1平行螺位错间的交互作用若两平行位错的柏氏矢量方向相同 位错相斥 方向相反 位错相吸 力的大小与距离成反比 与两者柏氏矢量大小之积成正比 与位置无关1 6 2平行刃位错间交互作用受力大小与位错在应力场中的位置有关 受力方向与两条位错线的柏氏矢量方向有关 当在同一个滑移面上时 同号位错相互排斥而远离 异号位错互相吸引而靠近 当相遇时 合并而消失 1 6 3垂直位错间的交互作用螺位错与刃位错垂直时 螺位错对刃位错的作用力是沿着x轴变化的 当x 0时 受力最大 逐渐远离的点其受力逐渐减小 在x 0的刃位错线上受力方向与z轴方向相反 在x 0上 受力方向为z轴方向 两螺位错垂直时 在x 0时 受力最大 在逐渐远离处 受力逐渐减小 最后趋于0 1 1 7位错与溶质间的交互作用位错与溶质间的交互作用有 弹性作用 通过应力场 最重要 化学作用 电学作用 几何作用 1 7 1弹性交互作用其作用的结果使应变能降低 使位错更稳定 位错与溶质原子的交互作用能 u 等于溶质原子进入晶体时 克服位错应力场作的功 若 溶质原子产生对称畸变 其应力场只有正应力 只能和刃位错发生相互作用溶质原子产生非对称畸变 其应力场有切应力 可能和螺位错发生相互作用 1 溶质原子与刃位错的交互作用设R0 R分别为溶剂原子和溶质原子半径 则溶质原子进入溶剂后 引起体积的变化为 V 4 3 R3 4 3 R03 当 很小时 则 V为 V 4 R03位错应力场中只有静水压力可使晶体体积变化而作功 静水压力为 m 1 3 x y z 引起畸变所作的功为 u u V 3 x y z u A sin r可知 u与溶质原子在刃位错应力场中的位置有关 u 0表示位错吸引溶质原子 u 0表示位错排斥溶质原子 当 0并且溶质原子在刃位错的压应力区域 则 u 0 排斥 溶质原子在刃位错拉应力区域 吸引 聚集在位错线下方 由上式可知 当 0时 即溶质半径大于溶剂半径 溶质原子聚集于刃位错的拉伸应力区域当 0时 即溶质半径小于溶剂半径 溶质原子集聚于刃位错的压应力区域 由上述分析知 大于溶剂原子的溶质原子倾向于聚集在刃位错的下部 小于溶剂原子的溶质原子倾向于聚集在刃位错的上部 溶质原子在刃位错附近的这种偏聚分布就称为柯垂尔气团 它对位错起钉扎作用 柯氏气团的结构是和温度 溶质原子浓度有关 一般溶质原子浓度都远远超过需要 当温度足够低时 位错中心处都被溶质原子占满 形成的气团称为凝聚气团或饱和气团 对位错的钉扎作用大 随着温度的升高 溶质原子的活动能力加强 它们可能离开位错 不能饱和 在位错周围形成的气团称为稀释气团 对位错的钉扎能力减小 2 间隙原子与螺位错的交互作用在体心立方金属中 通常情况下 间隙原子统计平均地分布在三个晶轴方向上的八面体间隙中 若晶体某处存在螺位错 由于螺位错的应力场是纯切应力场 则与螺位错成45 的圆锥面上存在着拉应力 而间隙原子进入这种八面体间隙的倾向性较大 这种情况使得原来平均分布在三个轴向上的间隙原子择优地分布到受拉伸应力的晶胞轴方向上 以降低晶体的能量 间隙原子这种择优分布叫史诺克气团 研究表明 史诺克气团对位错的钉扎作用近似地与温度无关 通常 在室温以下时 柯垂尔对位错的钉扎作用强烈 而在室温以上 史诺克气团对位错的钉扎将起着较大的作用 1 7 2化学交互作用面心立方金属滑移面上的完全位错要分解为一对半位错 两者之间隔着一层密排六方结构的堆垛层错 为保持热力学平衡 溶质原子在密排六方的堆垛层错和在面心立方基体中的分布不同 通常溶质原子在层错上浓度高于周围六方基体中的浓度 以保持低能状态 这种出于合金化学与热力学的原因而产生的溶质原子的不均匀分布 铃木称之为溶质原子与位错的化学交互作用 或称之为铃木气团 铃木气团堆位错的钉扎作用仅为柯氏气团的十分之一 但铃木气团与温度无关 所以在柯氏气团钉扎作用消失的高温下 铃木气团钉扎作用就显得重要 1 7 3电化学交互作用溶质原子如果它们的原子价不同 可以使固溶体产生不同的强化程度 这种因原子价不同而产生不同的强化效果 显然是和围绕溶质原子的电荷与围绕溶剂原子的电荷不同有关 如果 围绕溶质檐子的电荷多 溶质原子就和刃位错发生相互作用 这种静电相互作用把溶质原子吸引到位错周围把位错钉扎 其作用比弹性作用小几倍 1 7 4几何交互作用 结构交互作用 任何原子均优先选择异类原子作为它的近邻 如果合金中滑移面上有一位错通过 将改变原有的有序排列规律 能量升高 其滑移过程需要极高的应力 1 7 5屈服效应和吕德斯带在拉伸试验中 试样开始屈服时的应力叫上屈服点 继续变形时 应力可能会突然下降到一个较低的值 称为下屈服点 此时试样继续延伸而应力保持不变或作微小波动 即拉伸曲线上出现了应力平台区 称屈服延伸区 待产生一定程度的延伸后 应力又继续随应变而连续上升 这种在拉伸曲线上出现上屈服点 下屈服点和屈服延伸区的现象称为屈服效应 Tu 屈服效应是一种比较普遍的现象 而一般在体心立方晶体中尤为明显 体心立方晶体 间隙原子在此晶体中引起的体积变化大 溶子原子与位错的交互作用通过弹性作用来实现的 面心立方晶体 溶子原子与位错的交互作用通过化学作用来实现的 吕德斯带 屈服效应在金属外观上的反映 即当金属的变形量恰好在屈服延伸区内时 金属表面产生粗糙不平的表面缺陷 常呈带状 其形成过程为 在外力作用下 某些地方位错盯扎不牢 它们首先摆脱溶子原子的气团 开始运动 位错源开动 位错向前运动时 在晶界前受阻堆积 产生很大的应力集中 再叠加上外应力会使相邻的晶粒内的位错源开动 位错得以继续传播下去 局部区域内进行 这一过程进行得很快 不均匀的变形区 在外观上反映就是带状的表面缺陷 直到整个试样都被吕得斯带充满 屈服延伸区结束 防止吕得斯带产生的措施1 在钢中加入少量的Al Ti等强碳 氮化物形成元素 把C N固定住 不能盯扎住位错 可消除屈服效应 2 在钢板冲压前进行小量的预变形 使位错摆脱气团的包围 然后在冲压加工 但预变形的钢板 如果长期放置 冲压时又会出现屈服效应 1 7 6形变时效形变时效现象 把屈服效应显著的金属材料拉伸到超过屈服延伸区的变形程度以后 去掉载荷 又立即重新加载时 则开始塑性变形的应力仍等于卸载前的应力 若卸载后经过长时间的停留 再重新加载时 则开始塑性变形的应力高于卸载时的应力 重新出现了屈服效应 其结果屈服极限 强度极限和硬度均有所提高 而塑性与疲劳极限下降 易发生脆断 1 1 8位错的交割1 8 1刃位错与刃位错的交割当b1 b2时 两位错交割后得到折线pp pp 柏氏矢量仍为b2 且垂直于b2 因而为刃位错 不在原来的滑移面上它可以随CD位错线一起运动 当b1 b2时 交割后得到折线pp oo pp oo 为螺位错 它们的滑移面为原来位错的滑移面 故位错线CPP D AOO B在位错线张力的作用下会自动伸直 使折线消失 使位错恢复到交割前的状态 1 8 2刃位错与螺位错的交割AB为刃位错在 平面上 柏氏矢量为b1 CD为螺位错 柏氏矢量为b2 交割后形成折线OO OO 长为b2 柏氏矢量为b1 且OO b1 为刃位错 它的滑移面垂直于 平面 1 8 3螺位错与螺位错的交割b1 b2 交割后形成折线OO OO b1 是刃位错 不在原来滑移面上 1 8 4位错的割阶割阶 也是一条位错线 它的柏氏矢量就是原来位错线的柏氏矢量 其长度是另一条交割位错线的柏氏矢量 扭折 滑移面为原来滑移面 会自动消失 可动割阶 滑移面不同 随原来位错一起滑移 不会阻碍原来位错运动 不动割阶 滑移面不同 不随原来位错一起滑移 阻碍原来位错运动 割阶的类型 1 小割阶 高度为1 2个原子间距 弯曲2 中割阶 高度约为几个到20个原子间距 形成位错偶3 大割阶 长度约在20个原子间距以上 形成位错源 1 9位错的增殖与塞积1 9 1位错的增殖 变形可使位错增殖位错源 增殖位错的地方 2 1 9 2位错的塞积 n L 0此式说明 位错塞积群中的位错个数正比于外加切应力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论