



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.3 概率的基本性质制作人:刘老师 审核人:韩老师 授课时间: 课时: 一、教学目标:1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0P(A)1;2)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B)(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。二、重点与难点:概率的加法公式及其应用,事件的关系与运算。三、教学探究:(一)创设情境:(1)集合有相等、包含关系,如1,3=3,1,2,42,3,4,5等;(2)在掷骰子试验中,可以定义许多事件如:C1=出现1点,C2=出现2点,C3=出现3点,C4=出现4点,C5=出现5点,C6=出现6点,D1=出现的点数不大于1,D2=出现的点数大于3,D3=出现的点数小于5,E=出现的点数小于7,F=出现的点数大于6,G=出现的点数为偶数,H=出现的点数为奇数, 类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件. (a)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗? (b)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生? (c)如果事件D2与事件H同时发生,就意味着哪个事件发生?(d)事件D3与事件F能同时发生吗?(e)事件G与事件H能同时发生吗?它们两个事件有什么关系? (3) 全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是2/7和1/5,则该省夺取该次冠军的概率是2/7+1/5,对吗?为什么?观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?(二)。基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P119;(2)若AB为不可能事件,即AB=,那么称事件A与事件B互斥;(3)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;(三)、概率的几个基本性质、提出以下问题:(1)概率的取值范围是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率应怎样计算?(5)对立事件的概率应怎样计算?2.总结概率的几个性质:(1)概率的取值范围是01之间,即0P(A)1.(2)必然事件的概率是1.如在掷骰子试验中,E=出现的点数小于7,因此P(E)=1.(3)不可能事件的概率是0,如在掷骰子试验中,F=出现的点数大于6,因此P(F)=0.(4)当事件A与事件B互斥时,AB发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(AB)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.(5)事件A与事件B互为对立事件,AB为不可能事件,AB为必然事件,P(AB)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G=出现的点数为偶数与H=出现的点数为奇数互为对立事件,因此P(G)=1-P(H).(四) 例题分析:例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环; 事件B:命中环数为10环;事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生).例2 抛掷一骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现偶数点”,已知P(A)=,P(B)=,求出“出现奇数点或偶数点”的概率分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解解:记“出现奇数点或偶数点”为事件C,则C=AB,因为A、B是互斥事件,所以P(C)=P(A)+ P(B)=+=1答:出现奇数点或偶数点的概率为1例3 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问:(1)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?分析:事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1P(C)解:(1)P(C)=P(A)+ P(B)=(2)P(D)=1P(C)=例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?分析:利用方程的思想及互斥事件、对立事件的概率公式求解解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A、B、C、D,则有P(BC)=P(B)+P(C)=;P(CD)=P(C)+P(D)=;P(BCD)=1-P(A)=1-=,解的P(B)=,P(C)=,P(D)=答:得到黑球、得到黄球、得到绿球的概率分别是、(五)、课堂小结:概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0P(A)1;2)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B);3)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。(六)总结反思:课堂练习:1从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件。(1)恰好有1件次品和恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品;2抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,已知P(A)=,P(B)=,求出现奇数点或2点的概率之和。3某射手在一次射击训练中,射中10环、9环, 8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;(2)少于7环的概率。4已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是多少?6、评价标准:1解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。(3)不是互斥事件(4)中的2个事件既是互斥事件也是对立事件。2解:“出现奇数点”的概率是事件A,“出现2点”的概率是事件B,“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)=+=3解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为10.97=0.03。4解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为+=课后练习与提高1.某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是( C)(A)至多有一次中靶(B)两次都中靶(C)两次都不中靶(D)只有一次中靶2.把标号为1,2,3,4的四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一个。事件“甲分得1号球”与事件“乙分得1号球”是( A )(A)互斥但非对立事件(B)对立事件(C)相互独立事件 (D)以上都不对3. 甲、乙2人下棋,下成和棋的概率是,乙获胜的概率是,则甲不胜的概率是BA. B. C. D. 4. 从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是CA.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球” D.“至少有一个黑球”与“都是红球”5. 抽查10件产品,设事件A:至少有两件次品,则A的对立事件为 BA.至多两件次品 B.至多一件次品 C.至多两件正品 D.至少两件正品6. 从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,那么质量在4.8,4.85)(g)范围内的概率是 C A.0.62 B.0.38 C.0.02 D.0.687. 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为 DA.0.09 B.0.98 C.0.97 D.0.968.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚房产分割协议书:房屋产权归属及补偿方案
- 离异后共同子女教育及生活费用分摊协议范本
- 高端人才引进与劳动合同主体变更专项协议
- 住宅小区物业移交及公共安全防范服务协议
- 深海地质结构与矿产资源-洞察及研究
- 2025【合同范本】企业抵押贷款合同
- 成瘾相关神经元可塑性-洞察及研究
- 2025-2030封装晶体振荡器行业技术路线图与发展预测
- 富勒烯在生物成像技术中的研究-洞察及研究
- 2025-2030妇科微创显微设备政策环境与市场进入策略分析报告
- 餐饮服务食品安全常规项目自查记录表
- 膝关节病中医护理查房讲课件
- 粪污清运服务管理制度
- 医疗机构动火管理制度
- 孵化基地制度管理制度
- 中枢整合康复技术课件
- DB31/T 936-2015车载终端与手机互联应用规范第1部分:通用技术规范
- 软件委托开发合同样本(合同范本)10篇
- 兽医检验科工作流程手册
- 道路清扫保洁服务人员配置计划
- 垃圾消纳费合同协议
评论
0/150
提交评论