固定收益证券chapterPPT课件.ppt_第1页
固定收益证券chapterPPT课件.ppt_第2页
固定收益证券chapterPPT课件.ppt_第3页
固定收益证券chapterPPT课件.ppt_第4页
固定收益证券chapterPPT课件.ppt_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FIXED INCOMESECURITIES Lecture9OptionsonBondsandBondswithEmbeddedOptions 1 2 3 ValueofThree PeriodOption FreeBond C 9 F 100 4 CallableBondsandPutableBondsBondwithEmbeddedOptions Callablebonds Issuermayrepurchaseatapre specifiedcallprice TypicallycalledifinterestratesfallAcallablebondhastwodisadvantagesforaninvestor Ifitiseffectivelycalled theinvestorwillhavetoinvestinanotherbondyieldingalowerrate Acallablebondhastheunpleasantpropertyforaninvestortoappreciatelessthananormalsimilarbondwheninterestratesfall Therefore aninvestorwillbewillingtobuysuchabondatalowerpricethanacomparableoption freebondExamples TheUKTreasurybondwithcoupon5 5 andmaturitydate09 10 2012canbecalledinfullorpartfrom09 10 2008onatapriceofpounds100 TheUSTreasurybondwithcoupon7 625 andmaturitydate02 15 2007canbecalledoncoupondatesonly atapriceof 100 from02 15 2002on Suchabondissaidtobediscretelycallable 5 CallableandPutableBondsInstitutionalAspects Putablebondholdermayretireatapre specifiedpriceAputablebondallowsitsholdertosellthebondatparvaluepriortomaturityincaseinterestratesexceedthecouponrateoftheissueSo hewillhavetheopportunitytobuyanewbondatahighercouponrateTheissuerofthisbondwillhavetoissueanotherbondatahighercouponrateiftheputoptionisexercisedHenceaputablebondtradesatahigherpricethanacomparableoption freebond 6 CallableandPutableBondsYield to Worst LetusconsiderabondwithanembeddedcalloptiontradingoveritsparvalueThisbondcanberedeemedbyitsissuerpriortomaturity fromitsfirstcalldateon Onecancomputeayield to callonallpossiblecalldates Theyield to worstisthelowestoftheyield to maturityandallyields to callExample 10 yearbondbearinganinterestcouponof5 discretelycallableafter5yearsandtradingat102 Thereare5possiblecalldatesbeforematurity Yield to worstis4 54 7 CallableBondsValuationinaBinomialModel thevalueofthecallablebondisdeterminedbyselectingtheminimumoftheotherwisenoncallablebondorthecallprice andthenrollingthecallablebondvaluetothecurrentperiod Recursiveprocedure Pricecash flowtobediscountedonperiodn 1istheminimumvalueofthepricecomputedonperiodnandcallpriceonperiodn AndsoonuntilwegetthepricePofthecallablebond 8 9 10 ValueofPutablebond 11 12 Analternativebutequivalentapproachistocalculatetheweightedaveragevalueofeachpossiblepathsdefinedbythebinomialprocess Thisvalueisknownasthetheoreticalvalue Thet periodspotrateisequaltothegeometricaverageofthecurrentandexpectone periodspotrates AlternativeBinomialValuationApproach 13 consideragainthethree period 9 option freebondvaluedwithatwo periodinterestratetree 14 15 16 17 CallableandPutableBondsMonteCarloApproach Step1 generatealargenumberofshort terminterestratepathsStep2 alongeachinterestratepath thepricePofthebondwithembeddedoptionisrecursivelydeterminedThepriceofthebondiscomputedastheaverageofitspricesalongallinterestratepaths 18 CallableandPutableBondsMonteCarloApproach Example Priceacallablebondwithannualcoupon4 57 maturity10years redemptionvalue100andcallableat100after5yearsPricesofthebondundereachscenario PriceofthebondisaverageoverallpathsP 1 6 100 43 100 55 99 9 99 76 99 68 100 55 100 14 TheMonteCarlopricingmethodologycanalsobeappliedtothevaluationofallkindsofinterestratesderivatives 19 OptionsonBondsTerminology Anoptionisacontractinwhichtheseller writer grantsthebuyertherighttopurchasefrom orsellto theselleranunderlyingasset hereabond ataspecifiedpricewithinaspecifiedperiodoftimeThesellergrantsthisrighttothebuyerinexchangeforacertainsumofmoneycalledtheoptionpriceoroptionpremiumThepriceatwhichtheinstrumentmaybeboughtorsoldiscalledtheexerciseorstrikepriceThedateafterwhichanoptionisvoidiscalledtheexpirationdate AnAmericanoptionmaybeexercisedanytimeuptoandincludingtheexpirationdate AEuropeanoptionmaybeexercisedonlyontheexpirationdate 20 OptionsonBondsFactorsthatInfluenceOptionPrices Currentpriceofunderlyingsecurity Asthepriceoftheunderlyingbondincreases thevalueofacalloptionrisesandthevalueofaputoptionfalls Strikeprice Call put optionsbecomemore less valuableastheexercisepricedecreasesTimetoexpiration ForAmericanoptions thelongerthetimetoexpiration thehighertheoptionpricebecauseallexerciseopportunitiesopentotheholderoftheshort lifeoptionarealsoopentotheholderofthelong lifeoption Short termrisk freeinterestrate Priceofcalloptiononbondincreasesandpriceofputoptiononbonddecreasesasshort terminterestraterises throughimpactonbondprice Expectedvolatilityofyields orprices Astheexpectedvolatilityofyieldsoverthelifeoftheoptionincreases thepriceoftheoptionwillalsoincrease 21 OptionsonBondsPricing Optionsonlong termbonds Interestpaymentsaresimilartodividends Otherwise long termbondsarelikeoptionsonstock WecanuseBlack Scholesasinoptionsondividend payingequity Optionsonshort termbonds Problem theyarenotlikeastockbecausetheyquicklyconvergetopar WecannotdirectlyapplyBlack Scholes Othershortcomingsofstandardoptionpricingmodels Assumptionofaconstantshort termrateisinappropriateforbondoptions Assumptionofaconstantvolatilityisalsoinappropriate asabondmovesclosertomaturity itspricevolatilitydecline 22 OptionsonBondsPricing Asolutiontoavoidtheproblemistoconsideraninterestratemodel Thefollowingfigureshowsatreeforthe1 yearrateofinterest calibratedtothecurrentTS Thefigurealsoshowsthevaluesforadiscountbond par 100 ateachnodeinthetree 23 OptionsonBondsPricing Considera2 yearEuropeancallonthis3 yearbondstruckat93 5Startbycomputingthevalueattheendofthetree Ifbytheendofthe2ndyeartheshort termratehasrisento7 andthebondistradingat93 theoptionwillexpireworthless Ifthebondistradingat94 correspondingtoashort termrateof6 thecalloptionisworth0 5 Ifthebondistradingat95 short termrate 5 thecallisworth1 5Workingourwaybackwardthetree 24 OptionsonBondsPut CallParity AssumptionnocouponpaymentsandnoprematureexerciseConsideraportfoliowherewepurchaseonezerocouponbond oneputEuropeanoption andsell write oneEuropeancalloption sametimetomaturityTandthesamestrikepriceX PayoffatdateT 25 OptionsonBondsPut CallParity Con t Nomatterwhatstateoftheworldobtainsattheexpirationdate theportfoliowillbeworthXThus thepayofffromtheportfolioisrisk free andwecandiscountitsvalueattherisk freeraterWeobtainthecall putrelationship Forcouponbonds 26 ConvertibleBondsDefinition ConvertiblesecuritiesareusuallyeitherconvertiblebondsorconvertiblepreferredshareswhicharemostoftenexchangeableintothecommonstockofthecompanyissuingtheconvertiblesecurityBeingdebtorpreferredinstruments theyhaveanadvantagetothecommonstockincaseofdistressorbankruptcyConvertiblebondsoffertheinvestorthesafetyofafixedincomeinstrumentcoupledwithparticipationintheupsideoftheequitymarketsEssentially convertiblebondsarebondsthat attheholder soption areconvertibleintoaspecifiednumberofshares 27 ConvertibleBondsTerminology Convertiblebonds Bondholderhasarighttoconvertbondforpre specifiednumberofshareofcommonstockTerminology Convertiblepriceisthepriceoftheconvertiblebond Bondfloororinvestmentvalueisthepriceofthebondifthereisnoconversionoption Conversionratioisthenumberofsharesthatisexchangedforabond Conversionvalue currentsharepricexconversionratio Conversionpremium convertibleprice conversionvalue conversionvalue 28 ConvertibleBondsExamples Example1 Currentbondprice 930 Conversionratio 1bond 30sharescommon Currentstockprice 25 share MarketConversionValue 30shares x 25 750 ConversionPremium 930 750 750 180 750 24 Example2 AXAConvertibleBond AXAhasissuedinthe zoneaconvertiblebondpayinga2 5 couponrateandmaturingon01 01 2014 theconversionratiois4 04 On12 13 2001 thecurrentsharepricewas 24 12andthebid askconvertiblepricewas156 5971 157 5971 Theconversionvaluewasequalto 97 44 4 04x24 12 Theconversionpremiumcalculatedwiththeaskprice157 5971was61 73 157 5791 97 44 97 44 Theconversionofthebondinto4 04sharescanbeexecutedonanydatebeforethematuritydate 29 ConvertibleBondsUses Fortheissuer Issuingconvertiblebondsenablesafirmtoobtainbetterfinancialconditions Couponrateofsuchabondisalwayslowertothatofabulletbondwiththesamecharacteristicsintermsofmaturityandcouponfrequency Thiscomesdirectlyfromtheconversionadvantagewhichisattachedtothisproduct BesidestheexchangeofbondsforsharesdiminishestheliabilitiesofthefirmissuerandincreasesinthesametimeitsequitysothatitsdebtcapacityisimprovedFortheconvertiblebondholder Theconvertiblebondisadefensivesecurity verysensitivetoariseinthesharepriceandprotectivewhenthesharepricedecreases Ifthesharepriceincreases theconvertiblepricewillalsoincrease Whensharepricedecreases priceofconvertiblenevergetsbelowthebondfloor i e thepriceofanotherwiseidenticalbulletbondwithnoconversionoption 30 2020 1 27 31 ConvertibleBondsDeterminantsofConvertibleBondPrices Convertiblebondissimilartoanormalcouponbondplusacalloptionontheunderlyingstock Withanimportantdifference theeffectivestrikepriceofthecalloptionwillvarywiththepriceofthebondConvertiblesecuritiesarepricedasafunctionof Thepriceoftheunderlyingstock Expectedfuturevolatilityofequityreturns Riskfreeinterestrates Callprovisions Supplyanddemandforspecificissues Issue specificcorporate Treasuryyieldspread Expectedvolatilityofinterestratesandspreads Thus thereislargeroomforrelativemis valuations 32 ConvertibleBondsConvertibleBondPriceasaFunctionofStockPrice 33 ConvertibleBondsConvertibleBondPricingModel Apopularmethodforpricingconvertiblebondsisthecomponentmodel Theconvertiblebondisdividedintoastraightbondcomponentandacalloptionontheconversionprice withstrikepriceequaltothevalueofthestraightbondcomponent Thefairvalueofthetwocomponentscanbecalculatedwithstandardformulas suchasthefamousBlack Scholesvaluationformula Thispricingapproach however hasseveraldrawbacks First separatingtheconvertibleintoabondcomponentandanoptioncomponentreliesonrestrictiveassumptions suchastheabsenceofembeddedoptions callabilityandputability forinstance areconvertiblebondfeaturesthatcannotbeconsideredintheaboveseparation Second convertiblebondscontainanoptioncomponentwithastochasticstrikepriceequaltothebondprice 34 ConvertibleBondsConvertibleBondPricingModels TheoreticalresearchonconvertiblebondpricingwasinitiatedbyIngersoll 1977 andBrennanandSchwartz 1977 whobothappliedthecontingentclaimsapproachtothevaluationofconvertiblebondsIntheirvaluationmodels theconvertiblebondpricedependsonthefirmvalueastheunderlyingvariableBrennanandSchwartz 1980 extendtheirmodelbyincludingstochasticinterestrates Thesemodelsrelyheavilyonthetheoryofstochasticprocessesandrequirearelativelyhighlevelofmathematicalsophistication 35 ConvertibleBondsBinomialModel ThepriceofthestockonlycangouptoagivenvalueordowntoagivenvalueBesides thereisabond bankaccount thatwillpayinterestofr 36 ConvertibleBondsBinomialModel Weassumeu up d down ForBlackandScholeswewillneedd 1 uForconsistencywealsoneedu 1 r dExample u 1 25 d 0 80 r 10 37 ConvertibleBondsBinomialModel Basicmodelthatdescribesasimpleworld Asthenumberofstepsincreases itbecomesmorerealisticWewillpriceandhedgeanoption itappliestoanyotherderivativesecurityKey wehavethesamenumberofstatesandsecurities completemarkets Basisforarbitragepricing 38 ConvertibleBondsBinomialModel IntroduceanEuropeancalloption K 110Itmaturesattheendoftheperiod 39 ConvertibleBondsBinomialModel WecanreplicatetheoptionwiththestockandthebondConstructaportfoliothatpaysCuinstateuandCdinstatedThepriceofthatportfoliohastobethesameasthepriceoftheoptionOtherwisetherewillbeanarbitrageopportunity 40 ConvertibleBondsBinomialModel WebuysharesandinvestBinthebankTheycanbepositive buyordeposit ornegative shortsellorborrow Wewantthen Withsolution 41 ConvertibleBondsBinomialModel Inourexample wegetforstock And forbonds Thecostoftheportfoliois 42 ConvertibleBondsBinomialModel ThepriceoftheEuropeancallmustbe9 09 Otherwise thereisanarbitrageopportunity Ifthepriceislowerthan9 09wewouldbuythecallandshortselltheportfolioIfhigher theoppositeWehavecomputedthepriceandthehedgesimultaneously Wecanconstructacallbybuyingthestockandborrowing Shortcall theopposite 43 ConvertibleBondsBinomialModel Rememberthat And Substituting 44 ConvertibleBondsBinomialModel Aftersomealgebra Observethecoefficients Positive Smallerthanone AdduptooneLikeaprobability 45 ConvertibleBondsBinomialModel Rewrite Where Thiswouldbethepricingof Ariskneutralinvestor Withsubjectiveprobabilitiespand 1 p 46 ConvertibleBondsBinomialModel Supposethefollowingeconomy WeintroduceanEuropeancallwithstrikepriceKthatmaturesinthesecondperiod 47 ConvertibleBondsBinomialModel Thepriceoftheoptionwillbe Thereare twopaths thatleadtotheintermediatestate thatexplainsthe 2 48 ConvertibleBondsVolatilityintheBinomialModel 49 ConvertibleBondValuationMethodology Giventhataconvertiblebondisnothingbutanoptionontheunderlyingstock weexpecttobeabletousethebinomialmodeltopriceitAteachnode wetest a whetherconversionisoptimal b whetherthepositionoftheissuercanbeimprovedbycallingthebonds Itisadynamicprocedure max min Q1 Q2 Q3 where Q1 valuegivenbytherollback neitherconvertednorcalledback Q2 callprice Q3 valueofstocksifconversiontakesplace 50 ConvertibleBondExample Example Weassumethattheunderlyingstockpricetradesat 50 00witha30 annualvolatility Weconsideraconvertiblebondwitha9monthsmaturity aconversionratioof20 Theconvertiblebondhasa 1 000 00facevalue a4 annualcoupon Wefurtherassumethattherisk freerateisa continuouslycompounded 10 whiletheyieldtomaturityonstraightbondsissuedbythesamecompanyisa continuouslycompounded 15 Wealsoassumethatthecallpriceis 1 100 00 Usea3periodsbinomialmodel t n 3months or year 51 ConvertibleBondExample Wehave Actually continuouslycompoundedrate 52 ConvertibleBondExample 53 ConvertibleBondExample AtnodeG thebondholderoptimallychoosetoconvertsincewhatisobtainedunderconversion 1 568 31 ishigherthanthepayoffundertheassumptionofnoconversion 1 040 00 ThesameappliestonodeHOntheotherhand atnodesIandJ thevalueundertheassumptionofconversionislowerthanifthebondisnotconvertedtoequity Therefore bondholdersoptimallychoosenottoconvert andthepayoffissimplythenominalvalueofthebond plustheinterestpayments thatis 1 040 00 54 ConvertibleBondExample Workingourwaybackwardthetree weobtainatnodeDthevalueoftheconvertiblebondasthediscountedexpectedvalue usingrisk neutralprobabilitiesofthepayoffsatnodesGandH AtnodeF thesameprincipleapplies exceptthatitanberegardedasastandardbond Wethereforeusetherateofreturnonanonconvertiblebondissuedbythesamecompany 15 55 ConvertibleBondExample AtnodeE thesituationismoreinterestingbecausetheconvertiblebondwillendupasastockincaseofanupmove conversion andasabondincaseofadownmove noconversion Asanapproximateruleofthumb onemayuseaweightedaverageoftheriskfreeandriskyinterestrateinthecomputation wheretheweightingisperformedaccordingtothe risk neutral probabilityofanupversusadownmove Thenthevalueiscomputedas 56 ConvertibleBondExample NotethatatnodeD callingorconvertingisnotrelevantbecauseitdoesnotchangethebondvaluesincethebondisalreadyessentiallyequityAtnodeB itcanbeshownthattheissuerfindsitoptimaltocallthebondIfthebondisindeedcalledbythei

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论