廖文芳说课稿.doc_第1页
廖文芳说课稿.doc_第2页
廖文芳说课稿.doc_第3页
廖文芳说课稿.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的单调性说课稿 今天我说课的题目是函数的单调性。我将从教学目标、教学重点与难点、教学方法、学习方法、教学思路等几个方面来阐述我的构思和见解。 函数的单调性出自人教版普通高中课程标准实验教科书数学A版必修1第一章第三节的第一课时,本来这节课是函数的单调性与最大(小)值,由于时间关系,我今天只讲函数的单调性。学生已经学习了函数的概念、定义域、值域以及表示方法,这为过渡到本节课的学习起到了铺垫作用。本节内容是高中数学相当重要的一个基础知识点,是研究初等函数有关性质的基础,掌握本节内容不仅为今后的函数学习打下了理论基础,还有利于培养学生的抽象思维和分析问题、解决问题的能力。一、教学目标研究函数单调性的过程体现了数学的“数形结合”和“从一般到特殊”的思想方法,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。(1)建立增(减)函数的概念:通过观察一些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。掌握用定义证明函数单调性的步骤。(2)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(3)学会运用函数图象理解和研究函数的性质,引导学生学习和利用数型结合方法来解决函数单调性问题;(4)能够熟练应用定义判断和证明函数在某区间上的单调性二、教学重点与难点重点:函数的单调性及其几何意义难点:利用函数的单调性定义判断、证明函数的单调性 三、教学方法1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。四、学习方法1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。五、教学思路:(一)创设情景,揭示课题1 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:yx1-11-1yx1-11-1yx1-11-1 随x的增大,y的值有什么变化? 能否看出函数的最大、最小值? 函数图象是否具有某种对称性?2 画出下列函数的图象,观察其变化规律: 1)f(x) = x 从左至右图象上升还是下降_? 在区间 _ 上,随着x的增大f(x)的值随着 _ 2)f(x) = -x+2 从左至右图象上升还是下降 _? 在区间 _ 上,随着x的增大,f(x)的值随着 _ 3)f(x) = x2在区间 _ 上,f(x)的值随着x的增大而 _ 在区间 _ 上,f(x)的值随着x的增大而 _ 3、从上面的观察分析,能得出什么结论?学生回答后老师再归纳。从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质函数的单调性。(二)研探新知1、y = x2的图象在y轴右侧是上升的,如何用数学符号语言来描述这种“上升”呢?学生通过观察、思考、讨论,归纳得出:函数y = x2在(0,+)上图象是上升的,用函数解析式来描述就是:对于(0,+)上的任意的x1,x2,当x1x2时,都有x12x22 . 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。2、增、减函数的定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是减函数。注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)x2时,总有f(x1)f(x2)为减函数。4、函数的单调性定义如果函数y=f(x)在某个区间(D)上是增函数或是减函数,那么就说函数y=f(x)在这一区间(D)具有单调性,而这个区间(D)就叫做y=f(x)的单调区间。(三)质疑答辩,发展思维。根据函数图象说明函数的单调性例1 如图是定义在区间5,5上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?3、判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2D,且x1x2; 作差f(x1)f(x2); 变形(利用因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)4、练习: 课本P38练习第1、2、3题; 证明函数在(1,+)上为增函数。5、拓展:画出反比例函数的图象。 思考: 这个函数的定义域是什么? 它在定义域I上的单调性怎样?证明你的结论(四)归

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论