



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
立 体 几 何 中 的 求 距 离 问 题 集美中学数学组 刘 海 江一、记一记,填一填,这些知识你掌握了吗?1、两点间的距离:连接两点的线段的长。求法:(1)纳入三角形,将其作为三角形的一边,通过解三角形求得 (2)用公式,则|AB|= 。 (3)利用向量的模,|AB|=|= (4)两点间的球面距离 :A,B为半径是R的球O上的两点,若= 则A,B两点间的球面距离为 。 2、点到直线的距离:从点向直线作(相交)垂线,该点与垂足间的线段长。求法:(1)解三角形:所求距离是某直角三角形的直角边长,解此三角形即可。 (2)等积法:所求距离是某三角形的一高,利用面积相等可求此距离。 (3 ) 利用三垂线定理:所求距离视作某平面的斜线段长,先求出此平面的垂线段和射影的长,再由勾股定理求出所求的距离。 (4)利用公式:A的距离为 。 基本思想是将点线距转化为点点距。3、点到平面的距离与直线到平面的距离(重点)(1)从平面外一点引平面的一条垂线,这个点和_的距离,叫做这个点到这个平面的距离。求法: 利用定义、做出平面的垂线,将垂线段纳入某个三角形内,通过解三角形求出此距离;利用等积法、将此距离看作某个三棱锥的高,利用体积相等求出此距离;利用向量、点A,平面,满足,则点A到平面的距离 ( 是平面的法向量 )(2)一条直线和一个平面平行时,这条直线上任意_到这个平面的_,叫做这条直线和这个平面的距离。(一条直线和一个平面平行时,直线上任意两点到平面的距离相等)求法:转化为点到平面的距离来求;(具体方法参照点到平面的距离的求法)4、两个平行平面的距离一条直线垂直于两个平行平面中的一个平面,那么它也_另一个平面,这条直线叫做两个平面的_,它夹在两个平行平面间的部分叫做这两个平面的_,它的长度叫做两个平行平面的_。求法:转化为点到平面的距离来求;(具体方法参照点到平面的距离的求法)(两个平行平面时,一个平面上任意两点到另一个平面的距离都相等)5、异面直线的距离(难点)(1)和两条异面直线都垂直相交的直线叫做_。公垂线夹在异面直线间的部分,叫做_。公垂线段的长度叫做_。(2)任意两条异面直线_公垂线,公垂线段长是分别连结两条异面直线 上的点的线段中_。(两平行线间的距离略)求法:(1) 利用距离公式:已知两条异面直线所成的角为,AA是的公垂线,A在上,A在上,在上分别取E,F,已知AE=,AF=,EF=,则公垂线AA的长度 。(2)利用向量,点A,向量,则两条异面直线的距离空间的距离主要指以下八种:(1)两点间的距离;(2)点到直线的距离;(3)点到平面的距离;(4)两平行线间的距离;(5)两异面直线的距离;(6)平面的平行直线与平面间的距离;(7)两个平行平面的距离;(8)两点间的球面距离。八种距离都是指两个点集的元素之间距离的最小值。八种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离。在八种距离中,求点到平面的距离是重点,求两条异面直线的距离是难点。二、练一练,写一写,这些题目你能独立完成吗?1、 直三棱柱中,则点A到平面的距离是 A、 B、 C、 D、2、在中,AB=15,。若所在平面外一点P到A、B、C的距离都是14,则P到的距离是 A、13 B、11 C、9 D、73、设P是的二面角内一点,面,平面,A、B分别为垂足,PA=4,PB=2,则AB的长是 A、 B、 C、 D、4、将一块边长为2的正三角形铁皮沿各边的中位线折叠成一个正四面体,则这正四面体某顶点到其相对面的距离是 A、 B、 C、 D、5、 平面直角坐标系中,A(-2,3),B(3,-2),将平面沿轴折成120的二面角,则折后A,B两点间的距离为 A、 B、 C、 D、以上均不对6、正方体的棱长为1,则异面直线与间的距离为 。7、已知异面直线、的公垂线段AB的长为10cm,点A、M在直线a上,且AM=5cm若直线、所成的角为,则点M到直线的距离是_ _。8、在120的二面角内,放一个半径为5的球,切两个半平面于A,B两点,那么这两点在球面上的最短距离是 。、已知空间三点A(1,),B(,),C(,)则的面积是。10、已知正方形边长为1,过D作PD平面ABCD且PD=1,E、F分别是AB和BC的中点。 求D点到平面PEF的距离; 求直线AC到平面PEF的距离。11、在棱长为1的正方体中, 求点A到直线的距离;求点A到平面的距离。12、在棱长为1的正方体中, 求点到平面的距离; 求平面与平面的距离; 求直线AB到平面的距离。13、平行六面体,AD=3,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度大型发电机组进口贸易合同
- 高三试卷:山东省临沂市2025届高三上学期教学质量检测考试暨期中考试(九五联考)数学
- 2025版现代农业大棚建设与租赁一体化服务合同
- 二零二五年度房屋修缮维修工程合同协议
- 2025版光纤熔接设备性能检测与认证合同
- 2025版场地地质环境调查与监测服务合同下载
- 2025版学术论文翻译服务合同范本正规范本
- 2025版新能源电池产品销售与服务合同范本
- 二零二五年度长租公寓融资租赁协议
- 2025版房屋租赁合同范本(含租赁物维修基金及物业管理费用)
- 穿电缆合同协议
- 风力发电征地合同协议
- 夏令营安全知识课件
- 胃肠镜检查的护理常规
- 儿童乐园室内装修施工方案
- 园林绿化工程施工质量风险识别及控制措施
- KBZ2馈电开关华荣教案
- 检验科标本保存制度
- 2025版商业综合体物业服务合同招标文件3篇
- 建设工程降低成本、提高经济效益措施
- 课程思政融合深度学习的“实变函数与泛函分析”课程教学体系构建
评论
0/150
提交评论