


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 等腰三角形的判定教学设计课题名称等腰三角形的判定教材版本湘教版学科年级八姓 名周巧珍工作单位塘渡口十一中时间2019.10教学目标1探究等腰三角形判定定理,会运用该定理2经历等腰三角形的判定的探究过程,体会轴对称变换在几何证明中的作用3尝试有条理的表达,感受证明的严谨,关注解题方法的归纳。教学重点教学难点重点:掌握等腰三角形的判定定理难点:等腰三角形判定定理的探究,证明教学过程课题引入回顾:等腰三角形是怎样定义的?它有怎样的独特性质?导入:大家知道等腰三角形的两个底角相等,反过来它的逆命题是什么?预设:如果一个三角形有两个角相等,那么这个三角形是等腰三角形.或:两个角相等的三角形是等腰三角形.猜想:这个命题正确吗?新知学习(新知探究、巩固训练)一探究新知已知:如图,在ABC中,B=C.求证:AB=AC.证明:沿过点A的直线把BAC对折,得BAC的平分线AD交BC于点D,则1=2.又B=C,由三角形内角和的性质得ADB=ADC.沿AD所在直线折叠,由于ADB=ADC,所以射线DB与射线DC重合,又1=2,射线AB与射线AC重合.从而点B与点C重合,于是AB=AC.结论:等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.(简称“等角对等边”)几何语言:在ABC中 B=C AB=AC (等角对等边)即ABC是等腰三角形思考:“等角对等边”与“等边对等角”有何区别?它们是一对互逆定理,应用时要注意它们的条件与结论.(是针对同一个三角形的边角关系)2 新知应用如图,在ABC中,AB=AC,点D,E分别是AB和AC上的点,且DEBC。求证:ADE为等腰三角形.证明:AB=AC, B=C. 又DEBC, ADE=B,AED=C. ADE=AED. 于是ADE为等腰三角形教学过程新知学习(新知探究、巩固训练)3 巩固练习、如图,已知EAC是ABC的外角,AD是EAC的平分线,ADBC,求证:ABAC.证明:ADBC,1B,2C.又12,BC.ABAC(等角对等边)ABCDEF、如图,把一张矩形的纸沿对角线折叠,重合部分BDF是一个等腰三角形吗?为什么?证明:由折叠可知:EBD=CBD,在矩形ABCD中,ADBC,则CBD=FDB,所以FDB=EBD 所以BF=DFBDF是等腰三角形讨论:从以上练习中,关于等腰三角形,你有什么发现吗?归纳:平行线+角平分线=等腰三角形四提升拓展已知:等腰三角形ABC的底角ABC和ACB的平分线相交于点O.求证:OBC为等腰三角形.证明: ABC是等腰三角形 ABC =ACBBO,CO分别是ABC和ACB的平分线 OBC= ABC ,OCB= ABC , OBC =OCB OB=OC(等角对等边) OBC是等腰三角形.(此题综合了等腰三角形的性质和判定)课堂小结.今天,你学会了什么?你是怎么获得的?1. 等腰三角形的判定定理。2. 平行线+角平分线=等腰三角形。作业布置必做题:课本66页A组4,5题。选做题:课本67页A组7题。板书设计等腰三角形的判定判定定理:有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无线电岗位知识培训内容课件
- 2025年村级垃圾长制下环境管理职位招聘模拟题及解答技巧
- 2025年旅游行业导游员招聘考试模拟题集与答案解析
- 第2课 ブログ 第三课时教案 2023-2024学年初中日语人教版八年级第二册
- 2025年银行柜员岗位招聘考试必-备知识模拟题与解析
- 2025年教育机构行政助理面试指南与常见问题解答
- 2025年外语教师招聘全解英语教学法与课堂组织技巧预试题
- 信托助理面试题目及答案
- 2025年车队维修工专业笔试模拟题集与解析
- 2025年医卫类放射医学(师)基础知识-专业知识参考题库含答案解析(5套)
- 笔迹、指纹鉴定申请书
- 长沙市历年中考数学试卷,2014-2021年长沙中考数学近八年真题汇总(含答案解析)
- 【英语】人教版英语八年级英语下册阅读理解专题复习练习(含解析)
- 《植物生理学》课件第四章+植物的呼吸作用
- 2022年出差管理制度员工出差管理制度
- 工作责任心主题培训ppt课件(PPT 26页)
- 完整解读新版《英语》新课标2022年《义务教育英语课程标准(2022年版)》PPT课件
- 国家公交都市评价指标体系
- 田湾核电站常规岛系统培训教材VVER
- 一规定两守则题库
- 手诊纹路课件
评论
0/150
提交评论