




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时 1 2怎样判定三角形全等 1 什么是全等三角形 2 你已经学过的判定两个三角形全等的方法 能够完全重合的两个三角形叫做全等三角形 定义法 边角边 sas 1 掌握三角形全等的 角边角 角角边 的判定方法 2 能运用全等三角形的条件 解决简单的推理证明问题 一张教学用的三角形硬纸板不小心被撕坏了 如图 你能制作一张与原来同样大小的新教具吗 能恢复原来三角形的原貌吗 是唯一的吗 重合 为了解决上面的问题 现在我们以每一桌为一组 共同完成下面的一个游戏制作 1 每个同学任意画一个 abc 2 同桌交换各自画的 abc 每个同学都比着同桌的再画一个 a b c 使b c bc b b c c 即使两角和它们的夹边对应相等 3 把画好的 a b c 放到刚才同桌的 abc上 对应角对齐 对应边对齐 你发现了什么 4 所画的三角形和同桌画的三角形都能相互 两角及其夹边分别相等的两个三角形全等 简写成 角边角 或 asa 三角形全等判定方法2 已知 点d在ab上 点e在ac上 be和cd相交于点o ab ac b c 试说明 bd ce 例题 解析 在 adc和 aeb中 a a 公共角 ac ab 已知 c b 已知 所以 adc aeb asa 所以ad ae 全等三角形的对应边相等 又因为ab ac 已知 所以bd ce 在 abc和 def中 a d b e bc ef abc与 def全等吗 能利用角边角条件证明你的结论吗 a b c 判定方法3两角分别相等且其中一组等角的对边也相等的两个三角形全等 简写成 角角边 或 aas 有几种填法 ac bd asa 跟踪训练 co do aas ao bo aas 2 如图 要测量湖两岸相对的两点a b的距离 可以在ab的垂线bf上取两点c d 使bc cd 再作出bf的垂线de 使a c e在一条直线上 这时测得de的长就是ab的长 为什么 解析 利用 asa 判定 abc edc 从而得ab de 判定三角形全等的三种方法 它们分别是 1 边角边 sas 2 角边角 asa 3 角角边 aas 通过本课时的学习 需要我们掌握 1 已知 如图 1 2 c d 试说明 ac ad 在 abd和 abc中 1 2 已知 d c 已知 ab ab 公共边 所以 abd abc aas 所以ac ad 全等三角形对应边相等 解析 adf cbe aas df be 证明 ad cb a c ae cf af ce 在 adf和 cbe中 2 如图 e f在线段ac上 ad cb ae cf 若 b d 求证 df be 证明 dab eac dac eab ae be ad dc d e 90 在 adc和 aeb中 3 如图 ae be ad dc cd be dab eac 求证 ab ac adc aeb aas ac ab 4 潼南 中考 如图 四边形abcd是边长为2的正方形 点g是bc延长线上一点 连接ag 点e f分别在ag上 连接be df 1 2 3 4 1 试说明 abe daf 2 若 agb 30 求ef的长 解析 1 因为四边形abcd是正方形 所以ab ad 在 abe和 daf中 所以 abe daf asa 2 因为四边形abcd是正方形 所以 1 4 90 因为 3 4 所以 1 3 90 所以 afd 90 在正方形abcd中 ad bc 所以 1 agb 30 在rt adf中 afd 90 ad 2 所以af df 1 由 1 知 abe daf 所以ae df 1 所以ef af ae
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辅警调解业务知识培训课件
- 中国银行2025六盘水市秋招面试典型题目及参考答案
- 交通银行2025武汉市笔试英文行测高频题含答案
- 中国银行2025保山市结构化面试15问及话术
- 2025年3D打印技术的个性化定制优势
- 2025海洋塑料污染的源头控制
- 2025行业数字化转型挑战与对策-1
- 2025应急管理行业创新发展报告
- 邮储银行2025黄山市秋招半结构化面试题库及参考答案
- 交通银行2025威海市数据分析师笔试题及答案
- DL∕T 514-2017 电除尘器 标准
- IPO申报财务三年又一期会计报表模板(单体式)
- 急性胰腺炎抗凝治疗
- 媒介素养概论 课件 刘勇 第0-4章 绪论、媒介素养-新闻评论
- 美慧树课件教材培训
- 09J202-1 坡屋面建筑构造(一)-1
- 研发人员工时统计表
- 沙盘游戏在自闭症中的运用课件
- 桥梁施工过程中的安全检查要点
- 护士长竞聘晋升述职报告模板(含内容)
- 二年级科学上册跨学科项目化学习案例做一个小鸟餐厅
评论
0/150
提交评论