白噪声的生成.doc_第1页
白噪声的生成.doc_第2页
白噪声的生成.doc_第3页
白噪声的生成.doc_第4页
白噪声的生成.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

白噪声的研究与生成目录白噪声的研究与生成1目录11. 白噪声的定义22. 统计特性23. 白噪声的生成33.1 高斯白噪声的生成33.1.1. WGN:产生高斯白噪声33.1.2. AWGN:在某一信号中加入高斯白噪声43.1.3.注释43.2 均匀分布的白噪声的产生54.白噪声的应用61. 白噪声的定义 白噪声是指功率密度在整个频域内均匀分布的噪声。 所有频率具有相同能量的随机噪声称为白噪声。从我们耳朵的频率响应听起来它是非常明亮的“咝”(每高一个八度,频率就升高一倍。因此高频率区的能量也显著增强)。 即,此信号在各个频段上的功率是一样的。由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的噪声信号被称为有色噪声。 理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。实际上,我们常常将有限带宽的平整信号视为白噪声,以方便进行数学分析。2. 统计特性 术语白噪声也常用于表示在相关空间的自相关为0的空域噪声信号,于是信号在空间频率域内就是“白色”的,对于角频率域内的信号也是这样,例如夜空中向各个角度发散的信号。右面的图片显示了计算机产生的一个有限长度的离散时间白噪声过程。 需要指出,相关性和概率分布是两个不相关的概念。“白色”仅意味着信号是不相关的,白噪声的定义除了要求均值为零外并没有对信号应当服从哪种概率分布作出任何假设。因此,如果某白噪声过程服从高斯分布,则它是“高斯白噪声”。类似的,还有泊松白噪声、柯西白噪声等。人们经常将高斯白噪声与白噪声相混同,这是不正确的认识。根据中心极限定理,高斯白噪声是许多现实世界过程的一个很好的近似,并且能够生成数学上可以跟踪的模型,这些模型用得如此频繁以至于加性高斯白噪声成了一个标准的缩写词:AWGN。此外,高斯白噪声有着非常有用的统计学特性,因为高斯变量的独立性与不相关性等价。白噪声是维纳过程或者布朗运动的广义均方导数(generalized mean-square derivative)。白噪声的数学期望为0: 其自相关函数为狄拉克函数: 上式正是对白噪声的“白色”性质在时域的描述。由于随机过程的功率谱密度是其自相关函数的傅里叶变换,而函数的傅里叶变换为常数,因此白噪声的功率谱密度是平坦的。3. 白噪声的生成3.1 高斯白噪声的生成 MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。3.1.1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(m,n,p,imp,state) 重置RANDN的状态。 在数值变量后还可附加一些标志性参数: y = wgn(,POWERTYPE)指定p的单位。POWERTYPE可以是dBW, dBm或linear。线性强度(linear power)以瓦特(Watt)为单位。 y = wgn(,OUTPUTTYPE)指定输出类型。OUTPUTTYPE可以是real或complex。3.1.2. AWGN:在某一信号中加入高斯白噪声 y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。 y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为measured,则函数将在加入噪声之前测定信号强度。 y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。 y = awgn(,POWERTYPE)指定SNR和SIGPOWER的单位。POWERTYPE可以是dB或linear。如果POWERTYPE是dB,那么SNR以dB为单位,而SIGPOWER以dBW为单位。如果POWERTYPE是linear,那么SNR作为比值来度量,而SIGPOWER以瓦特为单位。3.1.3.注释1.分贝(decibel, dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对单位。例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电平的单位通常就以分贝表示,即事先取一个电压或电流作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。2.分贝瓦(dBW, dB Watt):指以1W的输出功率为基准时,用分贝来测量的功率放大器的功率值。3. dBm (dB-milliWatt):即与1milliWatt(毫瓦)作比较得出的数字。 0 dBm = 1 mW 10 dBm = 10 mW 20 dBm = 100 mW 也可直接用randn函数产生高斯分布序列,例如:程序代码 y=randn(1,2500); y=y-mean(y); y=y/std(y); a=0.0128; b=sqrt(0.9596); y=a+b*y;就得到了 N ( 0.0128, 0.9596 ) 的高斯分布序列。4.产生指定方差和均值的随机数: 设某个随机变量x均值为mu,方差为var2,若要产生同样分布的随机变量y,但使新的随机变量参数改变,均值为mu_1,方差为var_12,可以用如下公式进行变换:y=var_1/var*(x-mu)+mu_1,其中x为随机变量,其余为常数(原分布参数)。具体到正态分布,若要产生均值为u,方差为o2的M*N的随机数矩阵,可以用y=o*randn(M,N)+u得到。 对于均匀分布,若要产生区间的均匀分布的M*N的随机数矩阵,则可以用y=rand(M,N)*(b-a)+a得到。3.2 均匀分布的白噪声的产生 用乘同余法产生编程如下:A=6; x0=1; M=255; f=2; N=100; %初始化;x0=1; M=255;for k=1: N %乘同余法递推100次; x2=A*x0; %分别用x2和x0表示xi+1和xi-1; x1=mod (x2,M); %取x2存储器的数除以M的余数放x1(xi)中; v1=x1/256; %将x1存储器中的数除以256得到小于1的随机数放v1中; v(:,k)=(v1-0.5 )*f; %将v1中的数()减去0.5再乘以存储器f中的系数,存放在矩阵存储器v的第k列中,v(:,k)表示行不变、列随递推循环次数变化; x0=x1; % xi-1= xi; v0=v1;end %递推100次结束;v2=v %该语句后无;,实现矩阵存储器v中随机数放在v2中,且可直接显示在MATLAB的window中;k1=k;%grapher %以下是绘图程序;k=1:k1;plot(k,v,k,v,r);xlabel(k), ylabel(v);tktle( (-1,+1)均匀分布的白噪声) 程序运行结果如图3.1所示。 图3.1 均匀分布的白噪声4.白噪声的应用 白噪声的应用领域之一是建筑声学,为了减弱内部空间中分散人注意力并且不希望出现的噪声(如人的交谈),使用持续的低强度噪声作为背景声音。一些紧急车辆的警报器也使用白噪声,因为白噪声能够穿过如城市中交通噪声这样的背景噪声并且不会引起反射,所以更加容易引起人们的注意。 在电子音乐中也有白噪声的应用,它被直接或者作为滤波器的输入信号以产生其它类型的噪声信号,尤其是在音频合成中,经常用来重现类似于铙钹这样在频域有很高噪声成分的打击乐器。 白噪声也用来产生冲击响应。为了在一个演出地点保证音乐会或者其它演出的均衡效果,从P A 系统发出一个瞬间的白噪声或者粉红噪声,并且在不同的地方监测噪声信号,这样工程师就能够建筑物的声学效应能够自动地放大或者削减某些频率,从而就可以调整总体的均衡效果以得到一个平衡的和声。 白噪声可以用于放大器或者电子滤波器的频率响应测试,有时它与响应平坦的话筒或和自动均衡器一起使用。这个设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论