免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Appendix I DistributionsContents topDiscrete Univariate Bernoulli Binomial Categorical Negative Binomial Poisson Non-central HypergeometricContinuous Univariate Beta Chi-squared Double Exponential Exponential Flat Gamma Generalized Extreme Value Generalized F Generalized Gamma Generalized Pareto Generic LogLikelihood Distribution Log-normal Logistic Normal Pareto Student-t Uniform WeibullDiscrete Multivariate MultinomialContinuous Multivariate Dirichlet Multivariate Normal Multivariate Student-t WishartDiscrete Univariatetoptop appendix iBernoullir dbern(p) Binomialr dbin(p, n) Categoricalr dcat(p) Negative Binomialx dnegbin(p, r) Poissonr dpois(lambda) Non-central Hypergeometricx dhyper(n, m, N, psi)Continuous Univariatetoptop appendix iBetap dbeta(a, b) Chi-squaredx dchisqr(k) Double Exponentialx ddexp(mu, tau) Exponentialx dexp(lambda) Flatx dflat()constant value for all x; not a proper distributionGammax dgamma(r, mu) Generalized Extreme Value x dgev(mu,sigma,eta) Generalized Fx df(n,m,mu,tau)Reduces to the standard F for mu=0, tau=1.Generalized Gammax dggamma(r, mu, beta) Generalized Paretox dgpar(mu,sigma,eta) GenericLogLikelihood distributionx dloglik(lambda) exp(lambda); NB does not depend on x. See Generic sampling distributions.Log-normalx dlnorm(mu, tau) Logisticx dlogis(mu, tau) Normalx dnorm(mu, tau) Paretox dpar(alpha, c) Student-tx dt(mu, tau, k) Uniformx dunif(a, b) Weibullx dweib(v, lambda) Discrete Multivariatetoptop appendix iMultinomialx dmulti(p, N) Continuous Multivariatetoptop appendix iDirichletp ddirich(alpha) May also be speltddirchas in WinBUGS.Multivariate Normalx dmnorm(mu, T,) Multivariate Student-tx dmt(mu, T, k) Wishartx, dwish(R, k) Appendix II Functions and FunctionalsFunction arguments represented by e can be expressions, those by s must be scalar-valued nodes in the graph and those represented by v must be vector-valued nodes in a graph. Some function arguments must be stochastic nodes. Functionals are described using a similar notation to functions, the special notation F(x) is used to describe the function on which the functional acts. See example Functionals for details. Systems of ordinary differential equations and their solution can be described in the BUGS language by using the special D(x1:n, t) notation. See example ode for details. Scalar functions top abs(e) absolute value of e, |e| arccos(e) inverse cosine of e arccosh(e) inverse hyperbolic cosine of e arcsin(e) inverse sine of e arcsinh(e) inverse hyperbolic sine of e arctan(e) inverse tangent of e arctanh(e) inverse hyperbolic tangent of e cloglog(e) complementary log log of e, ln(-ln(1 - e) cos(e) cosine of e cosh(e) hyperbolic cosine of e cumulative(s1, s2) tail area of distribution of s1 up to the value of s2, s1 must be stochastic, s1 and s2 can be the same ? cut(e) cuts edges in the graph - see Use of the cut functiondensity(s1, s2) density of distribution of s1 at value of s2, s1 must be a stochastic node supplied as data, s1 and s2 can be the same.deviance(s1, s2) deviance of distribution of s1 at value of s2, s1 must be a stochastic node supplied as data, s1 and s2 can be the same. equals(e1, e2) 1 if value of e1 equals value of e2; 0 otherwise exp(e) exp(e) gammap(s1, s2) partial (incomplete) gamma function, value of standard gamma density with parameter s1 integrated up to s2 ilogit(e) exp(e)/ (1 + exp(e) icloglog(e) 1 - exp( - exp(e)integral(F(s), s1, s2, s3) definite integral of function F(s) between s = s1 and s = s2 to accuracy s3 log(e) natural logarithm of e logfact(e) ln(e!) loggam(e) logarithm of gamma function of e logit(e) ln(e/ (1 - e) max(e1, e2) e1 if e1 e2; e2 otherwise min(e1, e2) e1 if e1 = 0; 0 otherwisetan(e) tangent of e tanh(e) hyperbolic tangent of e trunc(e) greatest integer less than or equal to eVector functions top inprod(v1, v2)inner product of v1 and v2,Siv1iv2i interp.lin(e, v1, v2) v2p + (v2p+1 - v2p) * (e - v1p) / (v1p+1 - v1p) where the elements of v1 are in ascending order and p is such that v1p e v1p+1.Given function values in the vector v2 evaluated at the points in v1, this estimates the function value at a new point e by simple linear interpolation using the closest bounding pair of points. For example, given the population in 1991,2001 and 2011, we might want to estimate the population in 2004. inverse(v) inverse of symmetric positive-definite matrix v logdet(v) log of determinant of v for symmetric positive-definite v mean(v) Sivi / nn = dim(v) eigen.vals(v) eigenvalues of matrix vode(v1, v2, D(v3, s1), s2, s3)solution of system of ordinary differential equations at grid of points v2 given initial values v1 at time s2 solved to accuracy s3. v3 is a vector of components of the system of ode and s1 is the time variable. See the PDF files in the Diff/Docudirectory of the OpenBUGS installation for further details. prod(v) Pivi p.valueM(v)v must be a multivariate stochastic node, returns a vector of ones and zeros depending on if a sample from the prior is less than value of the corresponding component of v rank(v, s) number of components of vless than or equal to s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 杭州市中医院护理实习指导考核
- 吉安市中医院感染科继续教育管理考核
- 舟山市人民医院皮肤外科基本技能考核
- 湖州市人民医院腹部B超随访评估考核
- 泰州市中医院输尿管膀胱再植术考核
- 龙岩市人民医院护理教学风险管理考核
- 大兴安岭中医院失禁护理质量管理考核
- 南京市中医院康复量表使用一致性考核
- 景德镇市人民医院经皮肾镜操作与并发症处理考核
- 宜春市中医院设备性能监测考核
- (2025年)书记员法律知识基础完整考试题库(含答案)
- 2025年河南省事业单位联考招聘公共基础知识综合练习题及答案
- 第2课《中国人首次进入自己的空间站》课件+2025-2026学年统编版语文八年级上册
- 中职物理题库及答案人教版
- 八年级主题班会
- 2025年医学影像技术招聘笔试题及答案
- 学校心理健康教育三年发展规划及实施方案(2025-2028年)
- 软件开发项目进展汇报
- 2025年杭州地铁考试题库
- 基因检测管理办法
- 战备码头管理办法
评论
0/150
提交评论