



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章 直线与方程知识点及典型例题1. 直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是01802. 直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即k=tana。斜率反映直线与轴的倾斜程度。当直线l与x轴平行或重合时, =0, k = tan0=0;当直线l与x轴垂直时, = 90, k 不存在.当时,; 当时,; 当时,不存在。xyoa1a2l1l2例.如右图,直线l1的倾斜角a=30,直线l1l2,求直线l1和l2的斜率.解:k1=tan30= l1l2 k1k2 =1k2 =例:直线的倾斜角是( )A.120 B.150 C.60 D.30过两点P1 (x1,y1)、P1(x1,y1) 的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。例.设直线 l1经过点A(m,1)、B(3,4),直线 l2经过点C(1,m)、D(1,m+1), 当(1) l1/ / l2 (2) l1l1时分别求出m的值三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。3. 直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:y=kx+b,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点P1 (x1,y1)、P1(x1,y1)截矩式:其中直线与轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a、b。注意:一条直线与两条坐标轴截距相等分两种情况 两个截距都不为0 或都为0 ; 但不可能一个为0,另一个不为0. 其方程可设为:或y=kx. 一般式:Ax+By+C=0(A,B不全为0)注意:(1)在平时解题或高考解题时,所求出的直线方程,一般要求写成斜截式或一般式。(2)各式的适用范围 (3)特殊式的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); 例题:根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是,经过点A(8,2); .(2)经过点B(4,2),平行于x轴; .(3)在轴和轴上的截距分别是; .(4)经过两点P1(3,2)、P2(5,4); .例1:直线的方程为Ax+By+C=0,若直线经过原点且位于第二、四象限,则( )AC=0,B0BC=0,B0,A0 CC=0,AB04. 两直线平行与垂直 当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。5. 已知两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,(A1与B1及A2与B2都不同时为零)若两直线相交,则它们的交点坐标是方程组的一组解。若方程组无解 ; 若方程组有无数解与重合6. 点的坐标与直线方程的关系几何元素代数表示点P坐标P(xo,yo) 直线l方程Ax+By+C=0点P(xo,yo)在直线l上坐标满足方程:Ax+By+C=0点P(xo,yo)是l1、l2的交点坐标(xo,yo)满足方程组7. 两条直线的位置关系的判定公式A1B2A2B10方程组有唯一解两直线相交 或A1C2A2C1 0无解两直线平行 或A1C2A2C1 = 0有无数个解两直线重合两条直线垂直的判定条件:当A1、B1、A2、B2满足 时l1l2。答:A1A2+B1B2=0经典例题;例1.已知两直线l1: x+(1+m) y =2m和l2:2mx+4y+16=0,m为何值时l1与l2相交平行解:例2. 已知两直线l1:(3a+2) x+(14a) y +8=0和l2:(5a2)x+(a+4)y7=0垂直,求a值解:例3.求两条垂直直线l1:2x+ y +2=0和l2: mx+4y2=0的交点坐标解:例4. 已知直线l的方程为,(1)求过点(2,3)且垂直于l的直线方程;(2)求过点(2,3)且平行于l的直线方程。8. 两点间距离公式:设A(x1,y1)、B(x2,y2)是平面直角坐标系中的两个点,则|AB|=9. 点到直线距离公式:一点P(xo,yo)到直线l:Ax+By+C=0的距离10. 两平行直线距离公式例:已知两条平行线直线l1和l2的一般式方程为l1:Ax+By+C1=0,l2:Ax+By+C2=0,则l1与l2的距离为例1:求平行线l1:3x+ 4y 12=0与l2: ax+8y+11=0之间的距离。例2:已知平行线l1:3x+2y 6=0与l2: 6x+4y3=0,求与它们距离相等的平行线方程。12. 中点坐标公式:已知两点P1 (x1,y1)、P1(x1,y1),则线段的中点M坐标为(,)例. 已知点A(7,4)、B(5,6),求线段AB的垂直平分线的方程。13. 对称点与对称直线的求法例1:已知直线l:2x3y+1=0和点P(1,2). (1) 分别求:点P(1,2)关于x轴、y轴、直线y=x、原点O的对称点Q坐标(2) 分别求:直线l:2x3y+1=0关于x轴、y轴、直线y=x、原点O的对称的直线方程.(3) 求直线l关于点P(1,2)对称的直线方程。(4) 求P(1,2)关于直线l轴对称的直线方程。例2:点P(1,2)关于直线l: x+y2=0的对称点的坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论