施氮量对全株小麦产量、营养价值以及青贮品质的影响.doc_第1页
施氮量对全株小麦产量、营养价值以及青贮品质的影响.doc_第2页
施氮量对全株小麦产量、营养价值以及青贮品质的影响.doc_第3页
施氮量对全株小麦产量、营养价值以及青贮品质的影响.doc_第4页
施氮量对全株小麦产量、营养价值以及青贮品质的影响.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

施氮量对全株小麦产量、营养价值和青贮品质的影响李春江,秦甜甜,徐赵红,施清平,董朝霞,张建国*(华南农业大学农学院,广东广州 510642)摘要:以石麦001小麦品种为材料,研究不同施氮量对全株小麦干物质产量、营养价值以及青贮品质的影响,为全株小麦青贮利用的施肥管理提供理论依据。试验设置0、75、150、225、300 kg/hm25个不同施氮量处理,所用肥料为尿素,分基肥和拔节肥,按照6:4施入。蜡熟期观测小麦的株高、分蘖数,并每个小区选取1个1.0 m1.0 m的样方进行测产,在室内进行常规营养成分分析,并将材料实验室青贮2个月,分析其青贮品质。结果表明:施氮量0150 kg/hm2之间,随着施氮量增加,石麦001干物质产量增加,施氮量为150 kg/hm2时,干物质产量最高,达到8.78 t/hm2(p0.05)。施氮量在0225 kg/hm2时,石麦001的粗蛋白含量和干物质消化率都显著提高 (p0.05),并同时在施氮量为300 kg/hm2时达到最大值67.82 %DM和8.45 %DM。相反,石麦001的粗纤维、中性洗涤纤维以及酸性洗涤纤维随着施氮量的增加,趋向于减少。施氮量0225 kg/hm2之间,石麦001可溶性碳水化合物含量随着施氮量的增加而增加,并在225 kg/hm2时达到最大值(p0.05)。当施氮量为225 kg/hm2和300 kg/hm2时,全株小麦干物质中的硝态氮含量分别达到0.35和0.71 %DM,产生毒害。随着施氮量的增加,石麦001青贮料的乳酸和乙酸含量增加,但pH变化不大。施氮量在225 kg/hm2和300 kg/hm2时,青贮料的氨态氮含量显著高于其他3个处理(p0.05)。石麦001的干物质产量在施氮量0150 kg/hm2范围内随施量增加而显著增加(P0.05),但超过150 kg/hm2后增加N量对产量无影响(P0.05)。粗蛋白产量在施氮量0225 kg/hm2范围内随施量增加而显著增加(P0.05),当施氮量增加到300kg/hm2时,其粗蛋白质产量与225 kg/hm2没有差异。随施氮量增加石麦001的干物质消化率增加,除225 kg/hm2和300 kg/hm2间不显著外,其他各处理间都增加显著(P0.05)(图1)。石麦001的相对饲用价值也有随施氮量增加而增加的趋势,施氮与不施氮差异显著(P0.05),而施氮不同水平之间未达到显著(P0.05)(图2)。表1 施氮量对小麦株高、产量及饲用价值的影响Table 1 Effects of nitrogen rates on height, yield, relative forage value of wheat项目Items 0(kg/hm2) 75(kg/hm2) 150(kg/hm2) 225(kg/hm2) 300(kg/hm2)株高Height(cm) 66.540.79c 70.120.53b 70.310.40b 71.980.96ab 72.790.40a有效分蘖数Effective tiller number 1.170.09 1.400.23 2.000.35 2.620.12 3.220.23干草产量Hay yields(t/hm2) 3.980.16c 5.300.92b 8.780.24a 8.700.44a 8.670.27a粗蛋白产量CP yields(t/hm2) 0.160.01d 0.360.03c 0.670.05b 0.730.08a 0.730.03a注:数据格式为平均值标准误;表中同列数据间不同字母表示在P0.05水平差异显著。Note: The data format is average standard error;means of the same factor with the different letters in the same line are singnificantly different at the 0.05 level.2.2施氮量对小麦营养价值与附着微生物的影响石麦001干物质含量在施氮量300 kg/hm2时最低(P0.05)(表 2)。随施氮量增加,石麦001粗蛋白含量和可溶性碳水化合物增加,当施氮量为225kg/hm2时,显著高于前3个施氮量(P0.05),之后增加不显著(P0.05)。石麦001粗纤维含量、中性洗涤纤维含量和酸性洗涤纤维含量都趋向于随施氮量增加而减少,但有些变化未达到显著水平。随施氮量的增加,全株小麦的缓冲能和硝态氮含量也在增加,施氮量为300 kg/hm2两者同时达到最大值,并显著高于其他施氮量(P0.05)。石麦001植株上附着的乳酸菌随施氮量增加而增加,并在225 kg/hm2时达到最多(接近107cfu/g FM),但当施氮量为300 kg/hm2开始显著降低,与施氮量为75 kg/hm2时一样,都在105cfu/g FM水平。相反,在施氮量0225 kg/hm2范围内,植株上附着的细菌和霉菌随施氮量的增加而减少,并在225 kg/hm2同时下降到最少,当施氮量超过300 kg/hm2时,两者开始增加。表2 施氮量对小麦营养价值及附着微生物的影响Table2Effects of nitrogen rates on nutritional value,microbiological of wheat项目Items 0(kg/hm2) 75(kg/hm2) 150(kg/hm2) 225(kg/hm2) 300(kg/hm2)干物质Dry matter(DM,%) 44.180.36a 42.940.56ab 43.161.03a 41.040.15b 38.730.62c粗蛋白Crude protein(%DM) 4.070.11d 6.850.02c 7.630.04b 8.370.06a 8.450.11a粗脂肪Ether extract(%DM) 1.990.05c 2.960.23b 3.420.06a 3.470.09a 3.350.07a粗纤维Crude fiber(%DM) 36.271.07a 27.990.52b 28.12024b 26.000.36c 24.780.29c粗灰分Crude ash(%DM) 6.420.13 6.460.17 6.310.02 6.610.04 6.760.38无氮浸出物Nitrogen free extract(%DM) 43.260.89b 47.830.91a 47.180.12a 48.550.79a 49.270.52a中性洗涤纤维Neutral detergentfibe(%DM) 63.910.19a 61.961.02ab 61.261.04b 60.770.43b 59.820.69b酸性洗涤纤维Acid detergent fiber(%DM) 34.170.40a 31.520.61b 31.200.22bc 29.540.15bc 29.451.94c可溶性碳水化合物Water-soluble carbohydrate(%DM) 7.870.15d 8.330.11c 8.870.07b 9.330.20a 9.300.09a硝态氮NO3-N (%DM) 0.000.00 c 0.000.00c 0.240.09b 0.350.04b 0.710.10apH 5.980.01 5.930.02 6.060.07 6.240.10 5.920.20缓冲能Buffering capacity (mE/kg DM) 173.174.08d 202.548.20c 237.2812.33bc 277.939.29b 363.1635.54a乳酸菌Lactic acid bacteria(lgcfu/g FM) 3.230.15d 5.230.15c 5.700.13b 6.930.21a 5.010.26c细菌Aerobic bacteria(lgcfu/g FM) 7.190.10a 7.180.09a 6.880.09b 6.711.01b 6.870.25b酵母菌Yeast(lgcfu/g FM) 6.380.10b 6.840.37a 6.790.17a 7.000.07a 6.980.24a霉菌Mold(lgcfu/g FM) 4.990.05a 4.850.12a 4.520.18bc 4.360.06c 4.760.04ab注:鲜物质;cfu: 菌落形成单位;lg:菌数取以10为底的对数。数据格式为平均值标准误;表中同列数据间不同字母表示在P0.05水平差异显著。Note: FM: Fresh matter; cfu: Colony-Forming Units; lg: denary logarithm of the numbers ofbacteria. The data format is average standard error; means of the same factor with the different letters in the same line are singnificantly different at the 0.05 level2.3 施氮量对小麦发酵品质的影响青贮袋开封后,施氮量0225 kg/hm2范围内,pH有升高的趋势,当施氮量增加到300 kg/hm2时,pH开始显著降低(P0.05)(表 3)。随着施氮量增加,青贮料中的乳酸、乙酸和丙酸含量都在增加,并同时在300 kg/hm2施氮量时达到最大值4.17 %DM、1.80 %DM和2.85 %DM。所有青贮料中都没有检测到丁酸。在225 kg/hm2施氮量时,青贮料中的氨态氮含量最多,并显著高于其他施氮量水平(P0.05)。而75和150 kg/hm2施氮量与对照差异不显著(P0.05)。有氧条件下,施氮量0150 kg/hm2范围内,随着施氮量的增加,青贮料能保持96小时不发生腐败变质,当施氮量超过225 kg/hm2时,青贮料有氧稳定性保持时间增加到144小时。表3 施氮量对小麦青贮发酵品质的影响Table3 Effects of nitrogen rates on Fermentation quality of wheat项目Items 0(kg/hm2) 75(kg/hm2) 150(kg/hm2) 225(kg/hm2) 300(kg/hm2)Ph 4.400.04b 4.390.02bc 4.410.01ab 4.470.00a 4.330.01c乳酸Lactic acid(%DM) 1.570.14b 3.450.72ab 3.491.16ab 3.570.94ab 4.170.31a乙酸Acetic acid(%DM) 0.610.08b 0.730.12ab 1.440.52ab 1.770.40a 1.800.30a丙酸Propionic acid(%DM) 0.730.06c 1.000.01c 1.530.19b 2.800.04a 2.850.10a丁酸Butyric acid(%DM) 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00氨态氮NH3-N(%TN) 23.460.31bc 20.680.72c 19.970.38c 37.645.93a 28.772.91b有氧稳定性(h) 96.0 96.0 96.0 144 144 注:数据格式为平均值标准误;表中同列数据间不同字母表示在P0.05水平差异显著。Note: The data format is average standard error;means of the same factor with the different letters in the same line are singnificantly different at the 0.05 level.3 讨论与结论全株小麦作为青贮饲料具有很大的利用价值。饲草的栽培密度、刈割措施、施肥等是影响饲草产量和品质的重要因素。其中种植密度和施氮对饲草产量和饲用价值影响尤为突出27-29。在青贮发酵过程中,饲草的化学成分会影响青贮效果30,而施氮量对饲草的化学成分影响很大。实践证明,氮肥能增加牧草的产量,而且决定牧草中含氮化合物的含量31。施氮量的增加能提高玉米青贮料中的蛋白质和可溶性碳水化合物的含量和体外消化率,并减少酸性洗涤纤维的含量32。本试验中,施氮量从0 kg/hm2增加到150 kg/hm2时,石麦001的干草产量增加显著(p0.05),之后变化不大。表明施氮量在多于150 kg/hm2时,氮肥报酬率急剧下降,经济效益降低。随着施氮量的增加,石麦001粗蛋白含量和可溶性碳水化合物含量都在增加,并同时在施氮量为225 kg/hm2时达到最大值(p0.05)。同时,石麦001的相对饲用价值也在随着施氮量的增加而提高,而粗纤维、中性洗涤纤维以及酸性洗涤纤维则相反。Adamson and Reeve33的研究表明,全株青贮小麦可以为牲畜提供可消化纤维和一定的能量(9.0 MJ/kg, DM)。Sutton等34在奶牛日粮中用尿素处理过的全株小麦代替部分青贮牧草,提高了奶牛的产奶量和蛋白质含量。综上所述,施氮量的增加能够显著改善全株小麦青贮前的饲用品质。青贮是在无氧条件下,利用借助植物表面自然附生的乳酸菌,通过厌氧发酵,将植物可溶性碳水化合物转化为乳酸、乙酸等有机酸,并使饲料pH 值迅速降低,以抑制腐败菌群的生长繁殖,从而达到保持作物营养成分的目的35。全株小麦有良好的干物质产量和相对高的可溶性碳水化合物含量,能够改善青贮过程36。国内外关于施氮量对全株玉米青贮品质的影响有一定研究,而关于全株小麦的研究甚少。Namihira等37研究了施氮量对羊草青贮的影响,结果检测到高施氮量的羊草中硝态氮的含量多余低施氮量的羊草。高施氮量的青贮料往往伴随着pH升高,这可能主要是高浓度的硝酸盐增加缓冲能阻碍pH的下降33,38。本研究中,随着施氮量的增加,小麦青贮料的缓冲能、乳酸含量和乙酸含量均在增加,青贮料中的pH并没有随着乳酸和乙酸含量的增加而迅速降低,这主要是因为小麦青贮料缓冲能增加阻碍了小麦青贮料pH值的降低。在225 kg/hm2和300 kg/hm2施氮量时,青贮料中的氨态氮含量显著高于前3个施氮量(p0.05),蛋白质分解较多,青贮效果较差。表明施氮量过多不利于全株小麦青贮料养分的保存。青贮料的有氧稳定性很重要,它关系到青贮料暴露于空气中的安全和品质39。很多学者认为乙酸的积聚是提高各种青贮饲料有氧稳定性的主要原因40。Moon41认为其他挥发性脂肪酸如丙酸、丁酸也可抑制酵母菌和霉菌的生长,提高有氧稳定性。Weinberg等42关于施氮量对红花青贮效果的研究表明,施氮量有助于增加青贮料中的的乳酸含量。Keady and OKiely43对牧草的研究表明,高施氮量能够提高青贮料的有氧稳定性。本研究中,随施氮量的增加,青贮料中的乙酸、丙酸和硝态氮含量增加,当施氮量为225 kg/hm2和300 kg/hm2时,青贮料保存时间长于其他3个处理,有氧稳定性更好。Namihira等36对热带牧草的研究发现,施氮量高的牧草中硝酸盐的含量增加,青贮料保存较好。但当硝酸盐含量超过0.25 mg/g 时,会产生毒害,尤其在牛和羊等反刍动物中最常见44。本试验中,施氮量225和300 kg/hm2 时,全株小麦中的硝态氮含量都高于0.25mg/g,会产生毒害作用。综上所述,施氮量不仅影响全株小麦的生物产量和饲用品质,还影响全株小麦的青贮效果。过低或过高的施氮量都不利于全株小麦的青贮保存,只有适宜的施氮量才能使青贮小麦的生物产量、饲用品质和青贮效果达到最佳。本试验中小麦的最佳施氮量应在150 kg/hm2左右综合效果最好。参考文献 1 Liu, S., Cai, Y., Zhu, H. and Tan, Z. Potential and constraints in the development of animal industries in ChinaJ. J. Sci. Food Agric. 2012, 92:10251030. 2Filya, I. Nutritive value of whole crop wheat silage harvested at three stages of maturityJ. Animal Feed Science and Technology. 2003, 103(1): 85-95.3Bal, E B B, Bal, M A. Effects of chemical additives and ensiling time on whole plant wheat silage microbial profiles inferred by phenotypic and 16S ribosomal DNA analysesJ. World Journal of Microbiology and Biotechnology. 2012, 28: 767-776.4Mayne, C S, O Kiely P. An overview of silage production and utilisation in Ireland (19502005). Silage Production and UtilizationC, 2005.5Succi S, Benzi R. Lattice Boltzmann equation for quantum mechanics. Physica D: Nonlinear Phenomena. 1993, 69(3): 327-332.6Succi, S, Amati, G, Benzi, R. Challenges in lattice Boltzmann computingJ. Journal of statistical physics. 1995, 81(1-2): 5-16.7Crovetto, G M, Galassi, G, Rapetti, L, et al. Effect of the stage of maturity on the nutritive value of whole crop wheat silageJ. Livestock Production Science. 1998, 55(1): 21-32.8Weinberg, Z G, Chen, Y, Solomon, R. The quality of commercial wheat silages in IsraelJ. Journal of Dairy Science. 2009, 92(2): 638-644.9Ben-Ghedalia, D, Halevi, A, Miron, J. Digestibility by dairy cows of monosaccharide components in diets containing wheat or ryegrass silagesJ. Journal of dairy science,1995. 78(1): 134-140.10Ashbell, G, Sklan, D. Winter wheat for silage: a double-cropping system for use in subtropical climateJ. Feedstuffs. 1985, 57: 18-19.11OKiely, P, Moloney, A P. Nutritive value of whole crop wheat and grass silage for beef cattle when offered alone or in mixtures. Proceedings of the Agricultural Research ForumC.Tullamore,Ireland. Teagasc, Dublin, Ireland, 2002: 42.12Leaver, J D, Hill, J. The performance of dairy cows offered ensiled whole-crop wheat, urea-treated whole-crop wheat or sodium hydroxide-treated wheat grain and wheat straw in a mixture with grass silageJ. Animal Science. 1995, 61(3): 481-490.13Phipps, R H, Sutton, J D, Jones B A. Forage mixtures for dairy cows: the effect on dry matter intake and milk production of incorporating either fermented or urea treated whole-crop wheat, brewers grains, fodder beet or maize silage into diets based on grass silageJ. Animal Science. 1995, 61(3): 491-496. 14Filya, I, Ashbell, G, Hen Y, et al. The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silageJ. Animal Feed Science and Technology. 2000, 88(1): 39-46.15Weinberg, Z G, shbell, G A, Hen Y, et al. Ensiling whole-crop wheat and corn in large containers with Lactobacillus plantarum and Lactobacillus buchneriJ. Journal of Industrial Microbiology & Biotechnology. 2002, 28(1): 7-11.16Xie, Z L, Zhang, T E, Chen, X Z, et al. Effects of maturity stages on the nutritive composition and silage quality of whole crop wheatJ. Asian-australasian Journal of Animal Sciences. 2012, 25(10): 1374-1380.17AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemistry, Arlington, VA, USA.18 Thiex, N J, Anderson, S, Gildemeister, B. Crude fat,diethyl ether extraction, in feed,cereal grain,and forage (Randall/Soxtec/submersion method): Collaborative studyJ. Journal of AOAC INTERNATIONA, 2003, 86(5): 888-898. 19Murphy, R. P. 1958. A method for the extraction of plant samples and the determination of total soluble carbohydratesJ. J. Sci. Food Agric. 9:714-717. 20McDonald, P, Playne, M J. The buffering constituents of herbage and of silageJ. Journal of the Science of Food and Agriculture. 1966, 17: 264-265.21Van Soest, P J, Robertson, J B, Lewis, B A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutritionJ. Journal of Dairy Science. 1991, 74(10): 3583-3597.22Vogel, K P, Pedersen, J F, Masterson, S D, Toy, J J. Evaluation of a filter bag system for NDF, ADF and IVDMD forage analysisJ. Crop Science. 1999, 39(1): 276-279.23Tilley, J M A, Terry, R A. A two-stage technique for the in vitro digestion of forage cropsJ. Grass and Forage Science. 1963, 18:104-111. 24Dangkhaw, N, Maneerat, S, Sumpavapol, P. Characterization of lactic acid bacteria isolated from Kung-Som, atraditional fermented shrimp, inrespect of their probiotic propertiesJ. International Proceedings of Chemical, Biological & Environmental Engineering. 2012, 39: 121-125.25Fu, T. The effects of microbial inoculants on the fermentation process and quality of corn silageD. Beijing: Chinese Academy of Agricultural Sciences. 2005.26Rohweder, D A, Barnes, R F, Jorgensen, N. Proposed hay grading standards based on laboratory analyses for evaluating qualityJ. Journal of Animal Science. 1978, 47: 747-759. 27Kevin, L, Armstrong, Kenneth, A, Albrecht. Effect of Plant Density on Forage Yield and Quality of Intercropped Corn and Lablab BeanJ. Crop Science, 2008, 48(2): 814-822.28Maqsood, M, Shehzad, M A, Abbas, M. Seedrateeffectsonfodder yield and quality attributes of maize (Zea mays L.) varieties sown under irrigated conditionsJ. Pakistan Journal of Agricultural Sciences, 2012, 49(2): 155-162.29Safdarian, M, Razmjoo, J, Dehnavi. Effect of nitrogen sources and rates on yield and quality of silage corn J. Journal of Plant Nutrition. 2014, 37(4): 611-617.30McDonald, P, Henderson, A.R and. Heron, J.E. 1991. The biochemistry of Silage, 2nd ed. Chalcombe Publ, Bucks, England, UK.31Namihira,T, Shinzato, N, Akamine, H, Maekawa1, H and Matsui, H. Inuence of nitrogen fertilization on tropical-grass silage assessed by ensiling process monitoring using chemical and microbial community analysesJ. Journal of Applied Microbiology. 2010,108(6): 1954-1965.32Cox, W.J., Charney, D.J.R. Row spacing, plant density, and nitrogen effects on corn sil

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论