




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1设,且,则代数式的值为 ( ) 5. 7. 9. 11.【答】.解 由题设条件可知,且,所以是一元二次方程的两根,故,因此. 故选.2如图,设,为三角形的三条高,若,则线段的长为 ( ). 4. . .【答】.解 因为,为三角形的三条高,易知四点共圆,于是,故,即,所以.在Rt中,. 故选.3从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( ). . . .【答】.解 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.2008年全国初中数学联合竞赛试题参考答案及评分标准 第1页(共9页)所以所组成的数是3的倍数的概率是. 故选.4在中,和分别是这两个角的外角平分线,且点分别在直线和直线上,则 ( ). . . 和的大小关系不确定.【答】.解 ,为的外角平分线,.又,.又, . 因此,.故选.5现有价格相同的5种不同商品,从今天开始每天分别降价10或20,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为,则的最小值为 ( ) . . . .【答】 .解 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为,过了天. 天后每种商品的价格一定可以表示为,其中为自然数,且.要使的值最小,五种商品的价格应该分别为:,其中为不超过的自然数.所以的最小值为. 故选.6 已知实数满足,则的值为 ( ) . 2008. . 1.2008年全国初中数学联合竞赛试题参考答案及评分标准 第2页(共9页)【答】.解 ,由以上两式可得. 所以,解得,所以. 故选.二、填空题(本题满分28分,每小题7分)1设,则.解 ,.2如图,正方形的边长为1,为所在直线上的两点,且,则四边形的面积为解 设正方形的中心为,连,则,, .又,2008年全国初中数学联合竞赛试题参考答案及评分标准 第3页(共9页),所以,故,从而.根据对称性可知,四边形的面积.3已知二次函数的图象与轴的两个交点的横坐标分别为,且.设满足上述要求的的最大值和最小值分别为,则解 根据题意,是一元二次方程的两根,所以,. ,.方程的判别式,.,故,等号当且仅当时取得;,故,等号当且仅当时取得.所以,于是.4依次将正整数1,2,3,的平方数排成一串:149162536496481100121144,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 1 .解 到,结果都只各占1个数位,共占个数位;到,结果都只各占2个数位,共占个数位;到,结果都只各占3个数位,共占个数位;到,结果都只各占4个数位,共占个数位;到,结果都只各占5个数位,共占个数位;此时还差个数位.到,结果都只各占6个数位,共占个数位.2008年全国初中数学联合竞赛试题参考答案及评分标准 第4页(共9页)所以,排在第2008个位置的数字恰好应该是的个位数字,即为1.第二试 (A)一(本题满分20分) 已知,对于满足条件的一切实数,不等式 (1)恒成立.当乘积取最小值时,求的值.解 整理不等式(1)并将代入,得 (2)在不等式(2)中,令,得;令,得. 易知,故二次函数的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件的一切实数恒成立,所以它的判别式,即. 由方程组 (3)消去,得,所以或.又因为,所以或, 于是方程组(3)的解为或所以的最小值为,此时的值有两组,分别为和. 2008年全国初中数学联合竞赛试题参考答案及评分标准 第5页(共9页)二(本题满分25分) 如图,圆与圆相交于两点,为圆的切线,点在圆上,且.(1)证明:点在圆的圆周上.(2)设的面积为,求圆的的半径的最小值. 解 (1)连,因为为圆心,所以,从而. 因为,所以,所以,因此点在圆的圆周上. (2)设圆的半径为,的延长线交于点,易知.设,则,. 因为,,所以,所以,即,故. 所以,即,其中等号当时成立,这时是圆的直径.所以圆的的半径的最小值为. 三(本题满分25分)设为质数,为正整数,且 (1) 求,的值.解 (1)式即,设,则 (2)故,又,所以 (3)2008年全国初中数学联合竞赛试题参考答案及评分标准 第6页(共9页)由(1)式可知,能被509整除,而509是质数,于是能被509整除,故为整数,即关于的一元二次方程(3)有整数根,所以它的判别式为完全平方数. 不妨设(为自然数),则.由于和的奇偶性相同,且,所以只可能有以下几种情况:两式相加,得,没有整数解.两式相加,得,没有整数解.两式相加,得,没有整数解.两式相加,得,没有整数解.两式相加,得,解得.两式相加,得,解得,而不是质数,故舍去.综合可知. 此时方程(3)的解为或(舍去).把,代入(2)式,得. 第二试 (B)一(本题满分20分)已知,对于满足条件的一切实数对,不等式 (1)恒成立.当乘积取最小值时,求的值.解 由可知.在(1)式中,令,得;令,得.2008年全国初中数学联合竞赛试题参考答案及评分标准 第7页(共9页)将代入(1)式,得,即 (2)易知,故二次函数的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件的一切实数恒成立,所以它的判别式,即. 由方程组 (3)消去,得,所以或,又因为,所以或. 于是方程组(3)的解为或所以满足条件的的值有两组,分别为和. 二(本题满分25分)题目和解答与(A)卷第二题相同.三(本题满分25分)题目和解答与(A)卷第三题相同. 第二试 (C)一(本题满分20分)题目和解答与(B)卷第一题相同. 二(本题满分25分)题目和解答与(A)卷第二题相同. 三(本题满分25分)设为质数,为正整数,且满足 2008年全国初中数学联合竞赛试题参考答案及评分标准 第8页(共9页)求的值.解 (1)式即,设,则 (3)故,又,所以 (4)由(1)式可知,能被509整除,而509是质数,于是能被509整除,故为整数,即关于的一元二次方程(4)有整数根,所以它的判别式为完全平方数. 不妨设(为自然数),则.由于和的奇偶性相同,且,所以只可能有以下几种情况:两式相加,得,没有整
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025家庭绿化养护承包合同
- 2025茶叶特许加盟合同书
- 2025智能照明系统能源服务管理合同
- 2025年度分店(分公司)经营承包合同
- 2024年新疆事业单位联考笔试真题
- 塑料厂考勤管理规范制度
- 2025【合同范本】版合作经营协议书
- 2025【合同范本】苏州市上岗劳务合同
- 活动一 民族服装大展示说课稿-2025-2026学年小学综合实践活动蒙沪版四年级上册-蒙沪版
- 3.2细胞器之间的分工合作教学设计教学反思-2023-2024学年高一上学期生物人教版(2019)必修1
- CCP与备货0403 (华为培训)课件
- 小学数学西南师大四年级上册二加减法的关系和加法运算律简便计算综合练习PPT
- ASCVD时代总体心血管风险评估工具的更新ppt参考课件
- 人工智能导论-课件-第2章知识图谱
- 华中8型数控系统设备连接与参数配置
- 防突管理制度汇编
- 江苏省教育科学规划课题开题报告
- 医疗器械GMP文件PUR-OP-001 Rev 01采购控制程序
- 精选商务礼仪情景模拟情景
- 男生青春期健康教育(我)
- 重载铁路知识及我国重载铁路发展情况PPT通用课件
评论
0/150
提交评论