DWT在图像融合中的应用(课程设计).doc_第1页
DWT在图像融合中的应用(课程设计).doc_第2页
DWT在图像融合中的应用(课程设计).doc_第3页
DWT在图像融合中的应用(课程设计).doc_第4页
DWT在图像融合中的应用(课程设计).doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DWT在图像融合中的应用(课程设计) 摘 要小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。小波分析是傅立叶分析思想方法的发展与延拓。除了连续小波(CWT)、离散小波(DWT),还有小波包(Wavelet Packet)和多维小波。对于连续小波而言,尺度a、时间t和与时间有关的偏移量都是连续的。如果利用计算机计算,就必须对它们进行离散化处理,得到离散小波变换(DWT)。数字图像融合是图像分析的一项重要技术,该技术在数字地图拼接、全景图、虚拟现实等领域有着重要应用。虽然Photoshop等图像处现软件提供了图像处理功能,可以通过拖放的方式进行图像拼接,但由于完全是手工操作,单调乏味,且精度不高,因此,有必要寻找一种方便可行的图像融合方法。MATLAB具有强大的计算功能和丰富的工具箱函数,例如图像处理和小波工具箱包含了大多数经典算法,并且它提供了一个非常方便快捷的算法研究平台,可让用户把精力集中在算法上而不是编程上,从而能大大提高研究效率。关键词:小波分析;离散小波变换;图像融合;MATLAB 目 录1 课题描述12设计原理22.1小波分析的作用22.2小波分析的基本理论32.2.1从傅立叶变换到小波变换32.2.2 连续小波变换42.2.3离散小波变换62.3 图像融合72.3.1小波变换融合法72.3.2图像融合步骤82.4图像小波变换的MATLAB实现92.4.1 MATLAB小波分析工具箱中有关的函数92.4.2函数的调用93设计过程103.1设计内容103.2设计程序103.3程序运行结果及分析11总 结13参考文献14课程设计说明书(论文)1 课题描述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。对于连续小波而言,尺度a、时间t和与时间有关的偏移量都是连续的。如果利用计算机计算,就必须对它们进行离散化处理,得到离散小波变换(DWT)。数字图像融合是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术得到的合成图像则可以更全面、更精确地描述所研究的对象。正是由于这一特点,图像融合技术现已广泛地应用于军事、遥感、计算机视觉、医学图像处理等领域中。MATLAB 是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境. MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了 MATLAB 环境,以解决这些应用领域内特定类型的问题。本课题是利用MATLAB对于两幅图像,实现图像的离散小波变换(DWT),对系数进行可见融合,并重构图像。2设计原理2.1小波分析的作用小波分析克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。小波分析的应用是与小波分析的理论研究紧密地结合在一起的。现在,它已经在科技信息领域取得了令人瞩目的成就。电子信息技术是六大高新技术中的一个重要领域,图像和信号处理又是电子信息技术领域的重要方面。现今,信号处理已经成为当代科学技术工作的重要组成部分。现在,对性质随时间稳定不变的信号,处理的理想工具仍然是傅立叶分析。但在实际应用中,绝大多数信号是非稳定的,小波分析正是适用于非稳定信号的处理工具。图像处理是针对性很强的技术,根据不同应用、不同要求需要采用不同的处理方法。采用的方法是综合各学科较先进的成果而成的,如数学、物理学、心理学、信号分析学、计算机学、和系统工程等。计算机图像处理主要采用两大类方法:一类是空域中的处理,即在图像空间中对图像进行各种处理;另一类是把空间与图像经过变换,如傅立叶变换,变到频率域,在频率域中进行各种处理,然后在变回到图像的空间域,形成处理后的图像。图像处理是“信息处理”的一个方面,这一观点现在已经为人所熟知。它可以进一步细分为多个研究方向:图片处理、图像处理、模式识别、景物分析、图像理解、光学处理等等。小波分析用在图像处理方面,主要是用来进行图像压缩、图像去噪、图像增强(包括图像钝化和图像锐化)、图像融合、图像分解。2.2小波分析的基本理论2.2.1从傅立叶变换到小波变换小波分析属于时频分析的一种,传统的信号分析是建立在傅立叶变换的基础上的,由于傅立叶分析使用的是一种全局的变换,要么完全在时域,要么完全在频域,因此无法表述信号的时频局域性质,而这种性质恰恰是非平稳信号最根本和最关键的性质。为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并发展了一系列新的信号分析理论:短时傅立叶变换、Gabor变换、时频分析、小波变换、分数阶傅立叶变换、线调频小波变换、循环统计量理论和调幅-调频信号分析等。其中,短时傅立叶变换和小波变换也是应传统的傅立叶变换不能够满足信号处理的要求而产生的。短时傅立叶变换分析的基本思想是:假定非平稳信号在分析窗函数g(t)的一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,使在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数。因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。小波变换是一种信号的时间尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不边但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜,利用连续小波变换进行动态系统故障检测与诊断具有良好的效果。小波变换提出了变化的时间窗,当需要精确的低频信息时,采用长的时间窗,当需要精确的高频信息时,采用短的时间窗。小波变换用的不是时间-频率域,而是时间-尺度域。尺度越大,采用越大的时间窗,尺度越小,采用越短的时间窗,即尺度与频率成反比。2.2.2 连续小波变换定义:设,其傅立叶变换为,当满足允许条件(完全重构条件或恒等分辨条件)100) B(i,j)=1.2*B(i,j); else B(i,j)=0.5*B(i,j); end endendc1,s1=wavedec2(A,2,sym4);c2,s2=wavedec2(B,2,sym4);c=c1+c2;d=0.5*cM=waverec2(c,s1,sym4);N=waverec2(d,s1,sym4);figure;subplot(231),imshow(E);title(原始图像1);subplot(232),imshow(A);title(小波变换后1);subplot(233),imshow(F);title(原始图像2);subplot(234),imshow(B);title(小波变换后2);subplot(235),imshow(M,);title(融合后的图像1);subplot(236),imshow(N,);title(融合后的图像2);3.3程序运行结果及分析图3.1 程序运行结果小波变换用于图像融合有很多优点,图像经小波分解后,不同分辨率的细节信息互不相关,这样可以将不同频率范围内的信息分别组合,产生多种具有不同特征的融合图像。图像在不同分辨率水平上的能量和噪声互不干扰,融合图像的块状伪影容易消除等。缺点是融合图像基本保持了原图的光谱特性,但图像的空间细节表现能力不高,整个图像比较昏暗,边缘特性不是很明显,增强效果不突出。本设计对于原始图像均进行了离散小波变换,并对系数进行了不同程度的融合,从融合后的图像可以看出,图像2比图像1更亮些,改变融合系数的程度,可以得到不同效果的图像,以此达到不同的要求。总 结通过该课程设计,加深了我对离散小波变换和图像融合原理的理解,知道了小波变换和图像融合在计算机上的应用,更是体验了MATLAB软件的强大功能。我掌握了编译程序的原理以及步骤,还有编译程序工作的基本过程及其各阶段的基本任务,懂得了课本上的知识是机械的,抽象的。小波变换是一种信号的时间尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不边但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜,利用连续小波变换进行动态系统故障检测与诊断具有良好的效果。而在进行计算机计算时,不可能对全部尺度因子值和位移参数值计算,加之实际的观测信号都是离散的,所以信号处理中都是用离散小波变换(DWT)。图像融合是将两幅或多幅图像融合在一起,以获取对同一场景的更为精确、更为全面、更为可靠的图像描述。融合算法应该充分利用各原图像的互补信息,使融合后的图像更适合人的视觉感受,适合进一步分析的需要;并且应该统一编码,压缩数据量,以便于传输。本次课程设计,我有很大的收获,这不仅仅是理论知识上的完善,而且实践能力和动手能力有了质的飞跃!设计中,我自感知识的缺陷,不断的上网查阅资料,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论