二次函数1.doc_第1页
二次函数1.doc_第2页
二次函数1.doc_第3页
二次函数1.doc_第4页
二次函数1.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中小学1对1课外辅导专家龙文教育学科导学案教师:刁益洪 学生: 王艳炎 日期: 9月8日 星期: 六 时段: 课 题二次函数图象(一) 学习目标与考点分析1、 理解二次函数的概念,掌握二次函数的形式。2、 会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。3. 会用待定系数法求二次函数的解析式4、掌握型二次函数图像的特征;5、经历从特殊到一般的认识过程,学会合情推理学习重点重点:会用待定系数法求二次函数的解析式难点:建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围学习方法探究法、分析、对比、归纳总结学习内容与过程回顾所学,强化旧知一请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系: (1)面积y (cm2)与圆的半径 x ( Cm ) (2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2) 1113x二由上述可总结出二次函数的定义: 做一做1. 下列函数中,哪些是二次函数?(1) (2) (3) (4) (5)2、分别说出下列二次函数的二次项系数、一次项系数和常数项:(1) (2) (3)3、若函数为二次函数,则m的值为 。三、探索图像1. 用描点法画出二次函数 和图像(1) 列表x-2-101241014-4-1-0-1-4引导学生观察上表,思考一下问题:无论x取何值,对于来说,y的值有什么特征?对于来说,又有什么特征? 当x取等互为相反数时,对应的y的值有什么特征? 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到和的图像。2、二次函数()的图像由上面的四个函数图像概括出:(1) 二次函数的图像形如物体抛射时所经过的路线,我们把它叫做抛物线,(2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。(3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。(4) 当时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。课堂练习观察二次函数和的图像(1) 填空:抛物线顶点坐标对称轴位 置开口方向(2)在同一坐标系内,抛物线和抛物线的位置有什么关系?如果在同一个坐标系内画二次函数和的图像怎样画更简便? 师生互动,夯实基础例1、已知二次函数 当x=1时,函数值是4;当x=2时,函数值是-5。求这个二次函数的解析式。练习:已知二次函数 ,当x=2时,函数值是3;当x=-2时,函数值是2。求这个二次函数的解析式。例2、如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分)。设AE=BF=CG=DH=x(cm) ,四边形EFGH的面积为y(cm2),求:(1) y关于x 的函数解析式和自变量x的取值范围。(2) 当x分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH的面积,并列表表示。 ABEFCGDH练习: 用20米的篱笆围一个矩形的花圃(如图),设连墙的一边为x,矩形的面积为y,求:(1) 写出y关于x的函数关系式.(2)当x=3时,矩形的面积为多少?例题3:已知二次函数()的图像经过点(-2,-3)。(1) 求a 的值,并写出这个二次函数的解析式。(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。练习: 已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6的点的坐标。归结所学,巩固提高二次函数的图像和特征: 1、名称 ;2、顶点坐标 ;3、对称轴 ;4、当时,抛物线的开口向 ,顶点是抛物线上的最 点,图像在x轴的 (除顶点外);当时,抛物线的开口向 ,顶点是抛物线上的最 点图像在x轴的 (除顶点外)。在同一坐标系中画出函数图像,的图像。(1) 请比较这三个函数图像有什么共同特征?(2) 顶点和对称轴有什么关系?(3) 图像之间的位置能否通过适当的变换得到? (4) 由此,你发现了什么?教学反思:今天我学到了什么? 学生对于本次课的评价: 特别满意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论