




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三单元 函数一知识结构二要点精讲1指数与对数运算(1)根式的概念:定义:若一个数的次方等于,则这个数称的次方根。即若,则称的次方根,1)当为奇数时,次方根记作;2)当为偶数时,负数没有次方根,而正数有两个次方根且互为相反数,记作。性质:1);2)当为奇数时,;3)当为偶数时,。(2)幂的有关概念规定:1)N*;2); n个3)Q,4)、N* 且。性质:1)、Q);2)、 Q);3) Q)。(注)上述性质对r、R均适用。(3)对数的概念定义:如果的b次幂等于N,就是,那么数称以为底N的对数,记作其中称对数的底,N称真数。1)以10为底的对数称常用对数,记作;2)以无理数为底的对数称自然对数,记作;基本性质:1)真数N为正数(负数和零无对数);2);3);4)对数恒等式:。运算性质:如果则1);2);3)R)。换底公式:1);2)。2指数函数与对数函数(1)指数函数:定义:函数称指数函数,1)函数的定义域为R;2)函数的值域为;3)当时函数为减函数,当时函数为增函数。函数图像:1)指数函数的图象都经过点(0,1),且图象都在第一、二象限;2)指数函数都以轴为渐近线(当时,图象向左无限接近轴,当时,图象向右无限接近轴);3)对于相同的,函数的图象关于轴对称。,函数值的变化特征:(2)对数函数:定义:函数称对数函数,1)函数的定义域为;2)函数的值域为R;3)当时函数为减函数,当时函数为增函数;4)对数函数与指数函数互为反函数。函数图像:1)对数函数的图象都经过点(0,1),且图象都在第一、四象限;2)对数函数都以轴为渐近线(当时,图象向上无限接近轴;当时,图象向下无限接近轴);4)对于相同的,函数的图象关于轴对称。函数值的变化特征:,.,. 三典例解析题型1:指、对数运算1计算(1);(2);(3)。(4)计算:;解:(1)原式 ;(2)原式 ;(3)分子=;分母=;原式=。(4)原式=;点评:这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧。题型2:指数、对数方程的解法1.解方程解:原方程可化为,令,上述方程可化为,解得或(舍去),经检验原方程的解是评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根2已知关于的的方程,讨论的值来确定方程根的个数。解:因为在同一直角坐标系中作出函数与的图象,如图可知:当时,两个函数图象无公共点,所以原方程根的个数为0个;当时,两个函数图象有一个公共点,所以原方程根的个数为1个;当时,两个函数图象有两个公共点,所以原方程根的个数为2个。3(2008广东 理7)设,若函数,有大于零的极值点,则( B )ABCD【解析】,若函数在上有大于零的极值点,即有正根。当有成立时,显然有,此时,由我们马上就能得到参数的范围为.点评:上面两例是关于含指数式、对数式等式的形式,解题思路是转化为不含指数、对数因式的普通等式或方程的形式,再来求解。题型3:指、对数不等式的解法1.已知,则x的取值范围是_分析:利用指数函数的单调性求解,注意底数的取值范围解:,函数在上是增函数,解得x的取值范围是评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论2解关于的不等式解:在同一直角坐标系中作出函数与的图象,如图:两图象交点的横坐标为2,所以原不等式的解集为题型4:指、对数函数的概念与性质1设( )A0 B1 C2 D3解:C;,。点评:利用指数函数、对数函数的概念,求解函数的值。2. 求下列函数的定义域与值域.(1)y2; (2)y4x+2x+1+1.解:(1)x-30,y2的定义域为xxR且x3.又0,21,y2的值域为yy0且y1.(2)y4x+2x+1+1的定义域为R.2x0,y4x+2x+1+1(2x)2+22x+1(2x+1)21.y4x+2x+1+1的值域为yy1.3求下列函数的定义域:(1); (2); (3)分析:此题主要利用对数函数的定义域求解。解:(1)由0得,函数的定义域是;(2)由得,函数的定义域是;(3)由9-得-3,函数的定义域是4.比较下列各组数的大小:(1)若 ,比较 与 ;(2)若 ,比较 与 ;(3)若 ,比较 与 ;(4)若 ,且 ,比较a与b;(5)若 ,且 ,比较a与b解:(1)由 ,故 ,此时函数 为减函数由 ,故 (2)由 ,故 又 ,故 从而 (3)由 ,因 ,故 又 ,故 从而 (4)应有 因若 ,则 又 ,故 ,这样 又因 ,故 从而 ,这与已知 矛盾(5)应有 因若 ,则 又 ,故 ,这样有 又因 ,且 ,故 从而 ,这与已知 矛盾小结:比较通常借助相应函数的单调性、奇偶性、图象来求解5比较下列比较下列各组数中两个值的大小:(1),; (2),; (3),; (4),解:(1), ,; (2), , (3), , , (4), 6判断函数的奇偶性。解:恒成立,故的定义域为, ,所以,为奇函数。7.已知函数f(x)=a(aR),(1) 求证:对任何aR,f(x)为增函数(2) 若f(x)为奇函数时,求a的值。(1)证明:设x1x2f(x2)f(x1)=0故对任何aR,f(x)为增函数(2),又f(x)为奇函数 得到。即8. 已知9x-10.3x+90,求函数y=()x-1-4()x+2的最大值和最小值解:由已知得(3x)2-103x+90 得(3x-9)(3x-1)013x9 故0x2 而y=()x-1-4()x+2= 4()2x-4()x+2 令t=()x()则y=f(t)=4t2-4t+2=4(t-)2+1 当t=即x=1时,ymin=1 当t=1即x=0时,ymax=2 9.定义在R上的奇函数有最小正周期为2,且时,(1)求在1,1上的解析式;(2)判断在(0,1)上的单调性;(3)当为何值时,方程=在上有实数解.解(1)xR上的奇函数 又2为最小正周期 设x(1,0),则x(0,1),(2)设0x1x21时,函数y=logax和y=(1a)x的图象只可能是( )解:当a1时,函数y=logax的图象只能在A和C中选,又a1时,y=(1a)x为减函数。答案:B点评:要正确识别函数图像,一是熟悉各种基本函数的图像,二是把握图像的性质,根据图像的性质去判断,如过定点、定义域、值域、单调性、奇偶性。2.函数yax(a1)的图像是( )分析 本题主要考查指数函数的图像和性质、函数奇偶性的函数图像,以及数形结合思想和分类讨论思想.解法1:(分类讨论):去绝对值,可得y又a1,由指数函数图像易知,应选B.解法2:因为yax是偶函数,又a1,所以当x0时,yax是增函数;x0时,ya-x是减函数.应选B.3. 如图,曲线是对数函数 的图象,已知 的取值 ,则相应于曲线 的 值依次为( )(A) (B) (C) (D) 4.曲线 分别是指数函数 , 和 的图象,则 与1的大小关系是 ( ). ( 分析:首先可以根据指数函数单调性,确定 ,在 轴右侧令 ,对应的函数值由小到大依次为 ,故应选 .小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识.求最值5.为了得到函数的图象,可以把函数的图象()A向左平移9个单位长度,再向上平移5个单位长度B向右平移9个单位长度,再向下平移5个单位长度C向左平移2个单位长度,再向上平移5个单位长度D向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数转化为,再利用图象的平移规律进行判断解:,把函数的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数的图象,故选(C)评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等题型6:幂函数的概念与性质1.若,试求实数m的取值范围错解(数形结合):由图可知解得,且剖析:函数虽然在区间和上分别具有单调性,但在区间上不具有单调性,因而运用单调性解答是错误的正解(分类讨论):(1)解得;(2)此时无解;(3), 解得综上可得现在把例1中的指数换成3看看结果如何.若,试求实数m的取值范围错解(分类讨论):由图2知,(1)1, 解得;(2)此时无解;(3), 解得综上可得剖析:很明显,此解法机械地模仿例的正确解法,而忽视了函数间定义域的不同由此,使我们感受到了幂函数的定义域在解题中的重要作用正解(利用单调性):由于函数在上单调递增,所以,解得正确解法深化了对幂函数单调性的理解,激活了同学们的思维下面再对和两个问题与解法进行探究3.若,试求实数m的取值范围解:由图3,解得若,试求实数m的取值范围解析:作出幂函数的图象如图4由图象知此函数在上不具有单调性,若分类讨论步骤较繁,把问题转化到一个单调区间上是关键考虑时,于是有,即又幂函数在上单调递增, 解得,或m4上述解法意识到幂函数在第一象限的递增性,于是巧妙运用转化思想解题,从而避免了分类讨论,使同学们的思维又一次得到深化与发展解题点悟:通过以上探究,我们对幂函数的定义域、单调性、奇偶性及图象又有了较深刻的认识,同时对于形如(是常数)型的不等式的解法有了以下体会:(1)当,解法同例1(2)当,解法同例2(3)当,解法同例3(4)当,解法同例4编者点评:本文通过对一典型例题的多种变换,使我们对幂函数的性质及图象都有了较深刻的认识,其中例4解题过程中虽涉及了含绝对值不等式的解法,超出了我们的所学范围,但它其中蕴含的这种“转化”的思想,一方面拓宽了我们的解题思路,同时也体现了对知识的灵活应用能力,当然此题还可用分类讨论的方法解决,同学们不妨一试四广东或揭阳历年会考或高三模拟考精典试题回放详见投影五错题集聚焦1.分析方程()的两个根都大于1的充要条件.错解:由于方程()对应的二次函数为的图像与x轴交点的横坐标都大于1即可.故需满足,所以充要条件是错因:上述解法中,只考虑到二次函数与x轴交点坐标要大于1,却忽视了最基本的的前题条件,应让二次函数图像与x轴有交点才行,即满足0,故上述解法得到的不是充要条件,而是必要不充分条件.正解:充要条件是2.求函数的单调区间.错解:令,则当t6,即x1时,y为关于t的增函数,当t6,即x1时,y为关于t的减函数函数的单调递减区间是,单调递增区间为错因:本题为复合函数,该解法未考虑中间变量的取值范围.正解:令,则为增函数,当t6,即x1时,y为关于t的增函数,当t6,即x1时,y为关于t的减函数函数的单调递减区间是,单调递增区间为3.已知在0,1上是的减函数,则的取值范围是错解:是由,复合而成,又0在0,1上是的减函数,由复合函数关系知应为增函数,1错因:错因:解题中虽然考虑了对数函数与一次函数复合关系,却忽视了数定义域的限制,单调区间应是定义域的某个子区间,即函数应在0,1上有意义.正解:是由,复合而成,又0在0,1上是的减函数,由复合函数关系知应为增函数,1又由于 在0,1上时 有意义,又是减函数,1时,取最小值是0即可,2综上可知所求的取值范围是124. 已知函数若时,0恒成立,求的取值范围.错解:(一)恒成立,0恒成立解得的取值范围为错解:(二)若时,0恒成立即解得的取值范围为错因:对二次函数当上0恒成立时,0片面理解为,0,恒成立时,0 ;或者理解为这都是由于函数性质掌握得不透彻而导致的错误.二次函数最值问题中“轴变区间定”要对对称轴进行分类讨论;“轴定区间变”要对区间进行讨论.正解:设的最小值为(1)当即4时,730,得故此时不存在;(2) 当即44时,30,得62又44,故42;(3)即4时,70,得7,又4故74综上,得72六思维总结1(其中)是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底;2要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验;3解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 30578-2025常压储罐基于风险的检验及评价
- 桥梁知识培训日程安排课件
- 2025年电子商务网站开发工程师招聘模拟题集
- 2025年行车安全法规测试题集
- 2025年初级舞蹈教师职业认证考试模拟题
- 2025年政府事务协调与管理能力提升题集
- 桑蚕丝面料知识培训
- 2026届福建龙海市第二中学高一化学第一学期期末复习检测试题含解析
- 2025年网络游戏公司运营总监竞聘面试技巧与常见问题解答
- 2025年注册验船师资格考试(A级船舶检验专业基础环境与人员保护)全真冲刺试题及答案一
- 湖北省圆创高中名校联盟2026届高三第一次联合测评 语文试卷(含答案)
- 医务人员职业道德准则理论试题
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 非标设备检验标准
- 皖2015s209 混凝土砌块式排水检查井
- 外墙涂料工程技术标书
- 教学课件-信号智能电源屏(鼎汉)的简介与维护
- CML慢性髓系白血病医学教学课件
- 临床实习带教工作总结
- 老年营养不良
- 【公开课】社区教案
评论
0/150
提交评论