整式的乘除复习.doc_第1页
整式的乘除复习.doc_第2页
整式的乘除复习.doc_第3页
整式的乘除复习.doc_第4页
整式的乘除复习.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一选择题(共8小题)1(2013春韶山市校级期中)下列各式正确的是()Ax2x3=x6B(xn+1)2=x2n+1C(2xy2)2=4x2y4D2x+x=2x2【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则和积的乘方运算法则化简求出即可【解答】解:A、x2x3=x5,故此选项错误;B、(xn+1)2=x2n+2,故此选项错误;C、(2xy2)2=4x2y4,正确;D、2x+x=3x,故此选项错误;故选:C【点评】此题主要考查了同底数幂的乘法运算以及合并同类项和积的乘方运算等知识,正确掌握运算法则是解题关键2(2013春寿县期中)计算:(2x2)3(3x3)2的结果是()Ax5Bx6C5x5D5x6【分析】先计算积的乘方再利用同底数幂的加减法计算即可【解答】解:(2x2)3(3x3)2,=8x69x6,=x6故选:B【点评】此题主要考查了同底数幂的加减法以及积的乘方,注意不是同类项的不能合并3(2017常州)下列运算正确的是()Amm=2mB(mn)3=mn3C(m2)3=m6Dm6m2=m3【分析】根据同底数幂的乘法,积的乘方等于乘方的积,幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,可得答案【解答】解:A、同底数幂的乘法底数不变指数相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、幂的乘方底数不变指数相乘,故C符合题意;D、同底数幂的除法底数不变指数相减,故D不符合题意;故选:C【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键4(2017玄武区二模)氢原子的半径大约是0.000 0077m,将数据0.000 0077用科学记数法表示为()A0.77105B0.77106C7.7105D7.7106【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:0.000 0077用科学记数法表示为7.7106,故选D【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5(2017邢台模拟)计算正确的是()A3.4104=340000Bm2m2=3m2C(mn2)2=m2n4D4xy4yx=0【分析】根据科学记数法、同底数幂的乘法以及幂的乘方和积的乘方进行计算即可【解答】解:A、3.4104=34000,故A错误;B、m2m2=2m3,故B错误;C、(mn2)2=m2n4,故C错误;D、4xy4yx=0,故D正确;故选D【点评】本题考查了科学记数法、同底数幂的乘法以及幂的乘方和积的乘方,掌握运算法则是解题的关键6下列各式中,两个多项式的积等于36x2的是()A(x+6)(x6)B(x+6)(x+6)C(x6)(x6)D(x+6)(x6)【分析】根据平方差公式分别进行计算可得答案【解答】解:A、(x+6)(x6)=x236,故此选项错误;B、(x+6)(x+6)=x2+12x+36,故此选项错误;C、(x6)(x6)=36x2,故此选项正确;D、(x+6)(x6)=x236,故此选项错误;故选:C【点评】此题主要考查了平方差公式,关键是掌握平方差计算公式7(2013春福田区期末)下列关系中,正确的是()A(x+3)(x+2)=x26B(2ab)2=4a22ab+b2C(ab)2=a2a5b2D(ab)(ab)=b2a2【分析】根据整式的乘法以及完全平方公式进行计算,再进行计算即可【解答】解:A、(x+3)(x+2)=x2+5x+6,故错误;B、(2ab)2=4a24ab+b2,故错误;C、(ab)2=a22ab+b2,故错误;D、(ab)(ab)=b2a2,故正确;故选D【点评】本题考查了完全平方公式以及多项式的乘法、平方差公式,熟练掌握公式是解题的关键8(2017孝感)下列计算正确的是()Ab3b3=2b3B(a+2)(a2)=a24C(ab2)3=ab6D(8a7b)(4a5b)=4a12b【分析】各项计算得到结果,即可作出判断【解答】解:A、原式=b6,不符合题意;B、原式=a24,符合题意;C、原式=a3b6,不符合题意;D、原式=8a7b4a+5b=4a2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键二填空题(共5小题)9(2012秋薛城区校级期中)若xn=2,yn=3,则(x3y)n=24【分析】由幂的乘方与积的乘方的性质,可得(x3y)n=x3nyn=(xn)3yn,又由xn=2,yn=3,即可求得答案【解答】解:xn=2,yn=3,(x3y)n=x3nyn=(xn)3yn=233=24故答案为:24【点评】此题考查了幂的乘方与积的乘方此题难度适中,注意掌握公式的逆运算,注意掌握整体思想的应用10(2013秋汉阳区期中)已知10x=,10y=49,则10yx等于28【分析】根据同底数幂的除法底数不变指数相减,可得答案【解答】解:10yx=10y10x=49=49=28,故答案为:28【点评】本题考查了同底数幂的除法,利用同底数幂的除法底数不变指数相减是解题关键11(2017泰州)已知2m3n=4,则代数式m(n4)n(m6)的值为8【分析】先将原式化简,然后将2m3n=4代入即可求出答案【解答】解:当2m3n=4时,原式=mn4mmn+6n=4m+6n=2(2m3n)=2(4)=8故答案为:8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型12(2014春无锡期中)如图,请写出三个代数式(a+b)2、(ab)2、ab之间的等量关系是a+b)2=(ab)2+4ab【分析】通过观察图形知:(a+b)2,(ab)2,ab分别表示的是大正方形、空白部分的正方形及小长方形的面积【解答】解:由图可以看出,大正方形面积=阴影部分的正方形的面积+四个小长方形的面积,即:(a+b)2=(ab)2+4ab,故答案为:(a+b)2=(ab)2+4ab【点评】此题考查了学生观察、分析图形解答问题的综合能力,关键是通过观察图形找出各图形之间的关系13(2002太原)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米)房的主人计划把卧室以外的地面都铺上地砖,如果他选用地砖的价格是a元/米2,则买砖至少需用11axy元(用含a、x、y的代数式表示)【分析】分别计算出卫生间、厨房、卧室、客厅的面积后,求出总面积,再乘以单价即可【解答】解:根据住宅的平面结构示意图,可知:卫生间的面积为:(4xx2x)y=xy;厨房的面积为:x(4y2y)=2xy;客厅的面积为:2x4y=8xy;因此需要地砖的面积应该是xy+2xy+8xy=11xy;那么买砖需要11axy元故本题答案为:11axy【点评】本题考查了整式的运算,求出各房间的总面积是解题的关键三解答题(共9小题)14据地质学家预测,100万年后,洛杉矶将漂移到距现在位置的西北方向40km处,那么它平均每年漂移多少km?(用科学记数法表示)【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:40100万=0.00004=4105;答:它平均每年漂移4105km【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定15先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x5)(x6)=x211x+30;(x5)(x+6)=x2+x30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;(a+99)(a100)=a2a9900;(y500)(y81)=y2581y+40500【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算【解答】解:(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab(3)(a+99)(a100)=a2a9900;(y500)(y81)=y2581y+40500故应填:a2a9900;y2581y+40500【点评】本题考查了多项式乘多项式,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律应注意两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项16(2017贵阳)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题解:x(x+2y)(x+1)2+2x=x2+2xyx2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)(x+1)2+2x=x2+2xyx22x1+2x =2xy1【点评】本题考查了单项式乘以多项式以及完全平方公式,掌握运算法则是解题的关键17(2017长春)先化简,再求值:3a(a2+2a+1)2(a+1)2,其中a=2【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值【解答】解:原式=3a3+6a2+3a2a24a2=3a3+4a2a2,当a=2时,原式=24+162236【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键18(2016秋新野县期末)(1)化简(ab)(4ab)+3a(4ab)(2)若(1)中的b=ka,则(1)的结果,能否等于a2,若能请求出所有的k值,若不能,说明理由【分析】(1)先算乘法,再合并同类项即可;(2)代入后合并同类项,得出方程,求出k即可【解答】解:(1)原式=4a2ab4ab+b2+12a23ab=16a28ab+b2;(2)能,当b=ka时,原式=16a28ka2+(ka)2=(168k+k2)a2,根据题意得:168k+k2=1,k28k+15=0,解得:k=3或5【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键19(2016秋商州区期末)如图,某体育训练基地,有一块边长为(6m+5n)米的正方形土地,现准备在这块正方形土地上修建一个长为(2m+3n)米,宽为(m+2n)米的长方形游泳池,剩余部分则全部修建成休息区域(结果化简)(1)求休息区域的面积;(2)为了满足更多人需求,现要扩大游泳池,使游泳池的长增加(2m+n)米,宽增加(3m+n)米,正方形土地的面积不变,则扩大游泳池后休息区域的面积是多少?【分析】(1)利用正方形的面积减去中间长方形的面积即可求解;(2)用正方形的面积减去长宽增加后得到的长方形的面积即可求解【解答】解:(1)(6m+5n)2(2m+3n)(m+2n)=36m2+60mn+25n2(2m2+4mn+3mn+6n2)=36m2+60mn+25n22m24mn3mn6n2=34m2+53mn+19n2;(2)(6m+5n)2(2m+3n)+(2m+n)(m+2n)+(3m+n)=36m2+60mn+25n2(4m+4n)(4m+3n)=36m2+60mn+25n2(16m2+12mn+16mn+12n2)=36m2+60mn+25n216m212mn16mn12n2=20m2+32mn+13n2【点评】本题考查了整式的混合运算,正确计算多项式的乘法以及合并同类项是关键20(2016秋罗平县期末)将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=adbc上述记号叫做2阶行列式,若=8求x的值【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值【解答】解:根据题意化简=8,得:(x+1)2(1x)2=8,整理得:x2+2x+1(12x+x2)8=0,即4x=8,解得:x=2【点评】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键21(2016秋黄埔区期末)两个不相等的实数a,b满足a2+b2=5(1)若ab=2,求a+b的值;(2)若a22a=m,b22b=m,求a+b和m的值【分析】(1)先根据完全平方公式求出(a+b)2,再求出即可;(2)两等式相加、相减,变形后求出a+b=2,再变形后代入a2+b22(a+b)=2m,即可求出m【解答】解:(1)a2+b2=5,ab=2,(a+b)2=a2+2ab+b2=5+22=9,a+b=3;(2)a22a=m,b22b=m,a22a=b22b,a22a+b22b=2m,a2b22(ab)=0,(ab)(a+b2)=0,ab,a+b2=0,a+b=2,a22a+b22b=2m,a2+b22(a+b)=2m,a2+b2=5,522=2m,解得:m=,即a+b=2,m=【点评】本题考查了分解因式和完全平方公式等知识点,能灵活运用公式进行变形是解此题的关键22(2016太原二模)阅读与计算:对于任意实数a,b,规定运算的运算过程为:ab=a2+ab根据运算符号的意义,解答下列问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论