已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数中的不等式证明【考点点睛】放缩法证明不等式在历年高考数学中是永恒的话题,但它常考常新,学生却常考常怕。不等式的应用体现了一定的综合性,灵活多样性,多出现在压轴题的位置。数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻体现数学的基本特点。尽管如此,只要我们深入去探索,总有方法规律可循,总会有“拨得云开见日出”的时刻!放缩法的合理运用,往往能起到事半功倍的效果,有时能令人拍案叫绝;但其缺点也是显而易见,如果使用放缩法证题时没有注意放和缩的“度”,容易造成不能同向传递,即放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,所以要熟练地驾驭它是件不容易的事。命题角度1 构造函数命题角度2 放缩法命题角度3 切线法命题角度4 二元或多元不等式的证明思路命题角度5 函数凹凸性的应用在求解过程中,力求“脑中有形,心中有数”.依托端点效应,缩小范围,借助数形结合,寻找临界.命题角度5 函数凹凸性的应用【考法点拨】不等式恒成立问题中,许多试题的几何背景是曲线与切线静态或动态的上下位置关系,进而应用曲线的凸凹性可获得思路自然、过程简洁的图解.【知识拓展】一般地,对于函数的定义域内某个区间上的不同的任意两个自变量的值,总有(当且仅当时,取等号),则函数在上是凸函数,其几何意义:函数的图象上的任意两点所连的线段都不落在图象的上方.,则单调递减,在上为凸函数;总有(当且仅当时,取等号),则函数在上是凹函数,其几何意义:函数的图象上的任意两点所连的线段都不落在图象的下方.,则单调递增,在上为凹函数. 【典例13】(咸阳市2018届三模)已知函数,.(1)若在上恒成立,求实数的取值范围; (2)求证:.【解析】(1)等价于,即,记,则,当时,在上单调递增,由,所以,即不恒成立;当时,时,单调递增,不恒成立;当时,在上单调递减,所以,即恒成立;故在上恒成立,实数的取值范围是;(2)当时,在上成立,即,也是应用函数的凸凹性进行切线放缩的重要途径令,则,所以,所以【方法归纳】当时,由于在上单调递减,所以为凸函数,则切线在函数的图象的上方,所以.【典例14】(福建泉州市2018年5月质检)函数的图像与直线相切(1)求的值;(2)证明:对于任意正整数,.【解析】(1)设直线与曲线相切于点依题意得:,整理得,(*)令,所以,当时,单调递增;当时,单调递减当时,取得最小值,所以,即. 注意:该不等式是下一小题的放缩途径故方程(*)的解为,此时(2)要证明,即证,只需证.由(1)知,即, 根据结构特征,合理代换,寻求放缩途径因此,上式累加得:,得证; 要证明,即证,只需证.令,则根据结构特征,构造函数,寻求放缩途径所以当时,单调递减;当时,单调递增.当时,取得最大值,即,由得:,上式累加得:,得证;综上,.【审题点津】第(2)小题待证不等式的证明途径只有从第(1)小题的探究切线的过程中挖掘,这是切线放缩法的拓展运用.【典例15】(石家庄市2018届高中毕业班一模)已知函数在处的切线方程为.(1)求;(2)若方程有两个实数根,且,证明:.【解析】(1);(2)由(1)可知, ,设在处的切线方程为,易得,令, ,不等式放缩须利用切线则,当时,当时,设,则,故函数在上单调递增,又,所以当时,当时, 所以函数在区间上单调递减,在区间上单调递增,故,即,所以,设的根为,则, 切线放缩注意“脑中有形”又函数单调递减,故,故, 再者,设在处的切线方程为,易得,令,当时,当时,令,则,故函数在上单调递增,又,所以当时,当时, 所以函数在区间上单调递减,在区间上单调递增,所以,即,所以,设的根为,则, 切线放缩注意“脑中有形”又函数单调递增,故,故,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业员工晋升与调动制度
- 会议宣传与媒体报道制度
- 2026福建省福州市闽侯县教育局招聘44人备考题库附答案
- 2026西安工业大学招聘参考题库附答案
- 2026贵州沿河土家族自治县遴选县直机关事业单位19人参考题库附答案
- 2026重庆九龙新城谢家湾学校招聘备考题库附答案
- 2026陕西宁强县汉江源景区招聘参考题库附答案
- 中共南充市委政策研究室下属事业单位2025年公开选调工作人员的备考题库附答案
- 乐平市市属国资控股集团有限公司面向社会公开招聘人员【15人】参考题库附答案
- 南充市司法局2025年下半年公开遴选公务员(参公人员)公 告(2人)考试备考题库附答案
- 天津市重点名校2026届高一数学第一学期期末统考试题含解析
- 工程车辆销售合同范本
- 新人抖音直播奖励制度规范
- 2026年消防安全评估协议
- 【小学】【期末】家长会:孩子在学校的底气【课件】
- 钢结构防腐涂装工艺方案
- 云上(贵州)数据开发有限公司招聘笔试题库2026
- 书法美育课件
- JJF1033-2023计量标准考核规范
- DB37-T 1854-2020 山东省化工装置安全试车工作规范-(高清版)
- 动火作业施工方案模板
评论
0/150
提交评论