《函数概念》PPT课件.ppt_第1页
《函数概念》PPT课件.ppt_第2页
《函数概念》PPT课件.ppt_第3页
《函数概念》PPT课件.ppt_第4页
《函数概念》PPT课件.ppt_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一 函数的概念 二 函数的特性 五 小结与思考判断题 三 函数的运算 四 初等函数 第一节函数 因变量 自变量 定义1设和是两个变量 是一个给定的数集 如果对于每个数 变量按照一定法则总有确定的数值和它对应 则称是的函数 记作 数集D叫做这个函数的定义域 函数值全体组成的数集 当时 称为函数在的函数值 称为函数的值域 一 函数的概念 自变量 因变量 对应法则f 约定定义域是自变量所能取的使算式有意义的一切实数值 例如 例如 如果自变量在定义域内任取一个数值时 对应的函数值总是只有一个 这种函数叫做单值函数 否则叫与多值函数 2 单值函数与多值函数 例如 例1符号函数 3 几个特殊的函数举例 阶梯曲线 例2取整函数y x x 表示不超过的最大整数 在为整数值处 图形发生跳跃 跃度为1 例3狄利克雷函数 如果函数在不同的定义区间上用不同的解析式子表示称为分段函数 例1至例3均是分段函数 二 函数的特性 有界 无界 1 函数的有界性 2 函数的单调性 例如 函数在内是单调增加的 如图所示 例如 函数在内是单调减少的 在内是单调增加的 如图所示 3 函数的奇偶性 偶函数 偶函数的图形关于轴对称 奇函数 奇函数的图形对称于原点 不满足上述性质的函数为非奇非偶函数 例如 与是奇函数 与是偶函数 4 函数的周期性 通常说周期函数的周期是指其最小正周期 例如 函数都是以为周期的周期函数 函数都是以为周期的周期函数 并非所有的周期函数都有最小正周期 例如函数 为常数 及狄利克雷 Dirichlet 函数 均为周期函数 但没有最小正周期 三 函数的运算 对函数除了可以作加 减 乘 除四则运算之外 还有复合运算与求反函数的运算 注 不是任何函数都可以复合成一个函数 的定义域为 是没有意义的 不满足复合函数定义的条件 从而 例7已知求 故 例8函数是由哪些函数复合而成的 复合而成 定义3设函数的值域为 如果对于每一个 根据关系能确定唯一的 则称得到的新函数为的反函数 亦称与互为反函数 函数的反函数常记为 相对于反函数来说 原来的函数称为直接函数 它们图形的关系如下所示 直接函数与反函数的图形关于直线对称 函数在上没有反函数 但在及上分别有反函数及 又在上没有反函数 只是在上的反函数 例9求函数的反函数 舍去 将字母与互换 得 即 1 基本初等函数 四 初等函数 2 幂函数 3 指数函数 4 对数函数 对数函数与指数函数互为反函数 5 三角函数 正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数 它们均为周期函数 和有界 其余三角函数无界 为奇函数 为偶函数 6 反三角函数 是单调递增的 是单调递减的 它们均为有界函数 2 初等函数 由基本初等函数经有限次四则运算和有限次复合运算所得到的并可用一个式子表示的函数 称为初等函数 例如 设都是初等函数 则幂指函数也是初等函数 应用上还常遇到另一种初等函数 双曲函数与反双曲函数 1 双曲函数 奇函数 有界函数 在内单调增加 双曲函数常用公式 2 反双曲函数 奇函数 奇函数 五小结与思考判断题 1 函数的分类 非初等函数 分段函数 有无穷多项等函数 1 分段函数都不是初等函数 2 由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论