




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年七年级上学期数学期中检测试卷(含答案和解释)又到了一年一度的期中考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇2019年七年级上学期数学期中检测试卷,希望可以帮助到大家!一、选择题(共10小题,每小题2分,满分20分)1.在下列数:( ),42,|9|, ,(1)2019 ,0中,正数有()A. 1个 B. 2个 C. 3个 D. 4个2.下列各式计算正确的是()A. 32=6 B. (3)2=9 C. 32=9 D. (3)2=93.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A. a1 B. b1 C. a1 D. b04.在 ,0,0.010010001四个数中,有理数的个数为()A. 1 B. 2 C. 3 D. 45.若(m2)x|m|1=5是一元一次方程,则m的值为()A. 2 B. 2 C. 2 D. 46.如果关于x的方程6n+4x=7x3m的解是x=1,则m和n满足的关系式是()A. m+2n=1 B. m+2n=1 C. m2n=1 D. 3m+6n=117.下列关于单项式一 的说法中,正确的是()A. 系数是 ,次数是4 B. 系数是 ,次数是3C. 系数是5,次数是4 D. 系数是5,次数是38.下列每组中的两个代数式,属于 同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3ab D.9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%) B. a(1+25%)10% C. a(1+25%)(110%) D. 10%a1 0.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3 B. m+6 C. 2m+3 D. 2m+6二、填空题(共8小题,每小题2分,满分16分)11.5的相反数是, 的倒数为.12.太阳光的速度是300 000 000米/秒,用科学记数法表示为米/秒.13.比较大小:5 2, .14.若3a2a2=0,则5+2a6a2=.15.若|a|=8,|b|=5,且a+b0,那么ab=.16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.17.规定图形 表示运算ab+c,图形 表示运算x+zyw.则 + =(直接写出答案).18.在数轴上,若点A与表示2的点的距离为3,则点A表示的数为.三、解答题(共9小题,满分64分)19.计算题:(1)3(9)+5(2)(1 + )(48)(3)16(2)3( )(4)(4)12(10) 2+(4)2.20.计算:(1)3b+5a(2a4b);(2)4a3(7ab1)+2(3ab2a3).21.先化简,再求值:(3x2xy+y)2(5xy4x2+y),其中x=2,y= .22.解方程:(1)3x4(2x+5)=x+4(2)2 =x .23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有块,当黑砖n=2时,白砖有块,当黑砖n=3时,白砖有块.(2)第n个图案中,白色地砖共块.24.便民超市原有(5x210x)桶食用油,上午卖出(7x5)桶,中午休息时又购进同样的食用油(x2x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,9,18,7,13,6,10,5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(1,4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC(,),BD(,),C(+1,);(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,1),(2,+3),(1,2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.27.将长为1,宽为a的长方形纸片(1)第一次操作后,剩下的矩形两边长分别为;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a=;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.在下列数:( ),42,|9|, ,(1)2019,0中,正数有()A. 1个 B. 2个 C. 3个 D. 4个考点: 正数和负数.分析: 根据相反数的定义,绝对值的性质和有理数的乘方化简,再根据正、负数的定义进行判断即可.解答: 解:( )= 是正数,42是负数,|9|=9是负数,是正数,(1)2019=1是正数,0既不是正数也不是负数,2.下列各式计算正确的是()A. 32=6 B. (3)2=9 C. 32=9 D. (3)2=9考点: 有理数的乘方.分析: 根据负数的奇数次幂是负数,负数的偶数次幂是正数进行判断.解答: 解:因为32=9;(3)2=9;32=9;(3)2=9,所以A、B、D都错误,正确的是C.3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A.a1 B. b1 C. a1 D. b0考点: 有理数大小比较;数轴.分析: 首先根据数轴上的数左边的数总是小于右边的数,即可确定各个数的大小关系,即可判断.解答: 解:根据数轴可以得到:a0A、a1,选项错误;B、b1,选项错误;C、a1,故选项正确;4.在 ,0,0.010010001四个数中,有理数的个数为()A. 1 B. 2 C. 3 D. 4考点: 实数.分析: 先根据整数和分数统称有理数,找出有理数,再计算个数.解答: 解:根据题意, ,0,是有理数,共2个.5.若(m2)x|m|1=5是一元一次方程,则m的值为()A. 2 B. 2 C. 2 D. 4考点: 一元一次方程的定义.分析: 若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答: 解:根据题意,得 ,6.如果关于x的方程6n+4x=7x3m的解是x=1,则m和n满足的关系式是()A. m+2n=1 B. m+2n=1 C. m2n=1 D. 3m+6n=11考点: 一元一次方程的解.专题:计算题.分析: 虽然是关于x的方程,但是含有三个未知数,主要把x的值代进去,化出m,n的关系即可.解答: 解:把x=1代入方程6n+4x=7x3m中7.下列关于单项式一 的说法中,正确的是()A. 系数是 ,次数是4 B. 系数是 ,次数是3C. 系数是5,次数是4 D. 系数是5,次数是3考点: 单项式.专题: 推理填空题.分析: 根据单项式系数及次数的定义进行解答即可.解答: 解:单项式 中的数字因数是 ,所以其系数是 ;未知数x、y的系数分别是1,3,所以其次数是1+3=4.8.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3ab D.考点: 同类项;单项式.专题: 探究型.分析: 根据同类项的定义对四个选项进行逐一解答即可.解答: 解:A、 中,所含字母相同,相同字母的指数不相等,这两个单项式不是同类项,故本选项错误;B、0.5a2b与0.5a2c中,所含字母不相同,这两个单项式不是同类项,故本选项错误;C、3abc与3ab中,所含字母不相同,这两个单项式不是同类项,故本选项错误;D、 中所含字母相同,相同字母的指数相等,9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%) B. a(1+25%)10% C. a(1+25%)(110%) D. 10%a考点: 列代数式.分析: 用进价乘以加上利润后的百分比,再乘以优惠后的百分比列式即可.10.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3 B. m+6 C. 2m+3 D. 2m+6考点: 平方差公式的几何背景.分析 : 由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答: 解:依题意得剩余部分为(m+3)2m2=(m+3+m)(m+3m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,二、填空题(共8小题,每小题2分,满分16分)11.5的相反数是 5 , 的倒数为 .考点: 倒数;相反数.分析: 根据相反数及倒数的定义,即可得出答案.解答: 解:5的相反数是5, 的倒数是 .12.太阳光的速度是300 000 000米/秒,用科学记数法表示为 3108 米/秒.考点: 科学记数法表示较大的数.专题: 常规题型.分析: 科学记数法的表示形式为a10n的形式,其中110,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答: 解:将300 000 000用科学记数法表示为3108.13.比较大小:5 2, .考点: 有理数大小比较.分析: 根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.解答: 解:52,14.若3a2a2=0,则5+2a6a2= 1 .考点: 代数式求值.专题: 整体思想.分析: 先观察3a2a2=0,找出与代数式5+2a6a2之间的内在联系后,代入求值.解答: 解;3a2a2=0,3a2a=2,15.若|a|=8,|b|=5,且a+b0,那么ab= 3或13 .考点: 有理数的减法;绝对值.分析: 先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b0,进一步确定a、b的值,再代入求解即可.解答: 解:|a|=8,|b|=5,a=8,b=a+b0,a=8,b=5.当a=8,b=5时,ab=3;16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克 元.考点: 列代数式;加权平均数.分析: 根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量.17.规定图形 表示运算ab+c,图形 表示运算x+zyw.则 + = 0 (直接写出答案).考点:有理数的加减混合运算.专题: 新定义.分析: 根据题中的新定义化简,计算即可得到结果.解答: 解:根据题意得:12+3+4+657=0.18.在数轴上,若点A与表示2的点的距离为3,则点A表示的数为 1或5 .考点: 数轴.分析: 根据数轴上到一点距离相等的点有两个,可得答案.解答: 解 :|1(2)|=3|5(2)|=3,三、解答题(共9小题,满分64分)19.计算题:(1)3(9)+5(2)(1 + )(48)(3)16(2)3( )(4)(4)12(10) 2+(4)2.考点: 有理数的混合运算.分析: (1)先把减法改为加法,再计算;(2)利用乘法分配律简算;(3)先算乘方和和乘法,再算除法,最后算减法;(4)先算乘方和乘除,再算加减.解答: 解:(1)原式=3+9+5=11;(2)原式=1(48) (48)+ (48)=48+836=76;(3)原式=16(8)=2=2 ;20.计算:(1)3b+5a(2a4b);(2)4a3(7ab1)+2(3ab2a3).考点: 整式的加减.专题: 计算题.分析: 各式去括号合并即可得到结果.解答: 解:(1)原式=3b+5a2a+4b=3a+7b;21.先化简,再求值:(3x2xy+y)2(5xy4x2+y),其中x=2,y= .考点: 整式的加减化简求值.专题: 计算题.分析: 原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答: 解:原式=3x2xy+y10xy+8x22y=3x2+8x2xy10xy+y2y22.解方程:(1)3x4(2x+5)=x+4(2)2 =x .考点: 解一元一次方程.专题: 计 算题.分析: (1)方程去括号,移项合并,将x系数化为1 ,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答: 解:(1)方程去括号得:3x8x20=x+4,移项合并得:6x=24,解得:x=4;(2)方程去分母得:12(x+5)=6x2(x1),去括号得:12x5=6x2x+2,23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有 6 块,当黑砖n=2时,白砖有 10 块,当黑砖n=3时,白砖有 14 块.(2)第n个图案中,白色地砖共 4n+2 块.考点: 规律型:图形的变化类.专题:应用题.分析: (1)第1个图里有白色地砖6+4(11)=6,第2个图里有白色地砖6+4(21)=10,第3个图里有白色地砖6+4(31)=14;(2)第n个图里有白色地砖6+4(n1)=4n+2.解答: 解:(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:每个图形都比其前一个图形多4个白色地砖,可得规律为:第n个图形中有白色地砖6+4(n1)=4n+2块.24.便民超市原有(5x210x)桶食用油,上午卖出(7x5)桶,中午休息时又购进同样的食用油(x2x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?考点: 整式的加减.专题: 计算题.分析: (1)便民超市中午过后一共卖出的食用油=原有的食用油上午卖出的+中午休息时又购进的食用油剩下的5桶,据此列式化简计算即可;(2)把x=5代入(1)化简计算后的整式即可.解答: 解:5x210x(7x5)+(x2x)5=5x210x7x+5+x2x5=6x218x(桶),答:便民超市中午过后一共卖出(6x218x)桶食用油;(2)当x=5时,6x218x=652185=15090=60(桶),25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,9,18,7,13,6,10,5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至 少需要补充多少升油?考点: 正数和负数.分析: (1)根据有理数的加法,分别进行相加即可;(2)根据有理数的加法运算,可得每次的距离,再根据有理数的大小比较,可得答案;(3)根据题意先算出航行的距离,再乘以冲锋舟每千米耗油2升,即可得出答案.解答: 解:(1)149+187+136+105=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油822=164升,26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(1,4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC( +3 , +4 ),BD( +3 , 2 ),C D (+1, 2 );(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,1),(2,+3),(1,2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.考点: 有理数的加减混合运算;正数和负数;坐标确定位置.分析: (1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.解答: 解:(1)AC(+3,+4);BD(+3,2);CD(+1,2)故答案为:+3,+4;+3,2;D,2;(2)据已知条件可知:AB表示为:(1,4),BC记为(2,0)CD记为(1,2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;27.将长为1,宽为a的长方形纸片(1)第一次操作后,剩下的矩形两边长分别为 a与1a ;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a= ;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.考点: 一元一次方程的应用;列代数式;整式的加减.分析: (1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1a,即可求出第二次操作以后剩下的矩形的两边的长分别是1a和2a1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1a和2a1,分两种情况进行讨论:当1a2a1时,第三次操作后,剩下的长方形两边长分别是(1a)(2a1)和2a1;当1a2a1时,第三次操作后,剩下的长方形两边长分别是(2a1)(1a)和1a,并且剩下的长方形恰好是正方形,即可求出a的值.解答: 解:(1)长为1,宽为a的长方形纸片(第一次操作后剩下的矩形的长为a,宽为1a;(2)第二次操作时正方形的边长为1a,第二次操作以后剩下的矩形的两边分别 为1a,2a1,此时矩形恰好是正方形,1a=2a1,解得a= ;(3)第二次操作后,剩下矩形的两边长分别为:1a与2a1.当1a2a1时,由题意得:(1a)(2a1)=2a1,解得: .当 时,1a2a1.所以, 是所求的一个值;当1a2a1时,“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于礼记?曲礼,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《四、网上问路》说课稿教学反思-2023-2024学年初中信息技术人教版七年级上册
- 智能办公家具集成光触媒系统的传感器联动控制策略优化
- 2025年5G网络的智能交通系统
- 智能分体钳数据主权边界与医疗隐私保护的合规性冲突治理框架
- 新课标背景下化学挂图的知识重构与可视化呈现策略
- 新型绿色溶剂体系对凝点实验器热力学参数测量误差的补偿模型构建
- 新型生物降解催化剂对2,3-二氯苯甲酸环境泄漏的协同修复机制
- 2025年电石炉电极考试题及答案
- 3.2 整式的加减 第5课时 整式的化简求值说课稿 2024-2025学年鲁教版数学六年级上册
- 2025年5G网络的普及对智慧城市的影响
- 地质灾害风险评估与防治
- 物理实验安全培训
- 普通鱼缸买卖协议书
- T/CECS 10360-2024活毒污水处理装置
- 第三届全国技能大赛竞赛-无人机驾驶(植保)选拔赛备考试题库(附答案)
- 体重管理相关试题及答案
- 2026届高职单招考试大纲英语词汇(音标版)
- 临床护理文书书写规范课件
- 2025纯电动路面养护车技术规范
- 《烹饪营养与安全》考试复习题库(含答案)
- 寄生虫课件 吸虫学习资料
评论
0/150
提交评论