




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2007年-2010年新课标高考数学(理科)试题分类精编第11部分-线性规划一.选择题1.(2010年北京理7)设不等式组 表示的平面区域为D,若指数函数y=的图像上存在区域D上的点,则a 的取值范围是 (A)(1,3 (B )2,3 (C ) (1,2 (D ) 3, 解析:这是一道略微灵活的线性规划问题,作出区域D的图象,联系指数函数的图象,能够看出,当图象经过区域的边界点(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点A。2.( 2010年福建理8)设不等式组所表示的平面区域是,平面区域是与关于直线对称,对于中的任意一点A与中的任意一点B, 的最小值等于( )A. B.4 C. D.2【答案】B【解析】由题意知,所求的的最小值,即为区域中的点到直线的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线的距离最小,故的最小值为,所以选B。【命题意图】本题考查不等式中的线性规划以及两个图形间最小距离的求解、基本公式(点到直线的距离公式等)的应用,考查了转化与化归能力。3.(2010年山东理10)设变量x、y满足约束条件,则目标函数z=3x4y的最大值和最小值分别为(A)3,11(B) 3, 11(C)11, 3 (D)11,3【答案】A【解析】画出平面区域如图所示:可知当直线平移到点(5,3)时,目标函数取得最大值3;当直线平移到点(3,5)时,目标函数取得最小值-11,故选A。【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数的几何意义是解答好本题的关键。4.(2010年浙江理7)若实数,满足不等式组且的最大值为9,则实数(A) (B) (C)1 (D)2解析:将最大值转化为y轴上的截距,将m等价为斜率的倒数,数形结合可知答案选C,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题5.(2009年陕西理11)若x,y满足约束条件,目标函数仅在点(1,0)处取得最小值,则a的取值范围是w.w.w.k.s.5.u.c.o.m w.w.w.k.s.5.u.c.o.m (A) (,2 ) (B) (,2 ) (C) (D) 答案:B解析:根据图像判断,目标函数需要和,平行,由图像知函数a的取值范围是(,2 )6.(2009年海南理6)设x,y满足(A)有最小值2,最大值3 (B)有最小值2,无最大值(C)有最大值3,无最小值 (D)既无最小值,也无最大值解析:画出可行域可知,当过点(2,0)时,但无最大值。选B.x 2 2 y O -2 z=ax+by 3x-y-6=0 x-y+2=0 7.(2009年山东理12) 设x,y满足约束条件 ,若目标函数z=ax+by(a0,b0)的值是最大值为12,则的最小值为( ). A. B. C. D. 4【解析】:不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a0,b0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a0,b0)取得最大12,即4a+6b=12,即2a+3b=6, 而=,故选A.【命题立意】:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求的最小值常用乘积进而用基本不等式解答8.(2009年天津理2)设变量x,y满足约束条件:.则目标函数z=2x+3y的最小值为(A)6 (B)7 (C)8 (D)23【考点定位】本小考查简单的线性规划,基础题。解析:画出不等式表示的可行域,如右图,让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得,所以,故选择B。9.(2009年安徽理7)若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是(A) (B) (C) (D) 高.考.资.源.网AxDyCOy=kx+解析:不等式表示的平面区域如图所示阴影部分ABC由得A(1,1),又B(0,4),C(0,)ABC=,设与的交点为D,则由知,选A。 10.(2008年山东理12)设二元一次不等式组所表示的平面区域为,使函数的图象过区域的的取值范围是( )A B CD解:C,区域是三条直线相交构成的三角形(如图)显然,只需研究过、两种情形, 且即11.(2008年广东理4)若变量满足则的最大值是( )A90 B80 C70 D40【解析】画出可行域,利用角点法易得答案C. 二.填空题1.( 2010年陕西理14)铁矿石和的含铁率,冶炼每万吨铁矿石的的排放量及每万吨铁矿石的价格如下表:(万吨)(百万元)50%1370%056某冶炼厂至少要生产1.9(万吨)铁,若要求的排放量不超过(万吨),则购买铁矿石的最少费用为 (百万元).【答案】15【解析】设铁矿石购买了万吨,铁矿石购买了万吨,购买铁矿石的费用为百万元,则由题设知,本题即求实数满足约束条件,即(*)时,的最小值.作不等式组(*)对应的平面区域,如图阴影部分所示.现让直线,即平移分析即知,当直线经过点时,取得最小值.又解方程组得点坐标为.故.xyO24P2.(2010年安徽理13)设满足约束条件,若目标函数的最大值为8,则的最小值为_。【答案】4【解析】不等式表示的区域是一个四边形,4个顶点是,易见目标函数在取最大值8,所以,所以,在时是等号成立。所以的最小值为4.【规律总结】线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则区域端点的值是目标函数取得最大或最小值,求出直线交点坐标代入得,要想求的最小值,显然要利用基本不等式.3.(2010年辽宁理14)已知且,则的取值范围是_(答案用区间表示)【答案】(3,8)【命题立意】本题考查了线性规划的最值问题,考查了同学们数形结合解决问题的能力。【解析】画出不等式组表示的可行域,在可行域内平移直线z=2x-3y,当直线经过x-y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=23-31=3;当直线经过x+y=-1与x-y=3的焦点A(1,-2)时,目标函数有最大值z=21+32=8.4(2009年浙江理13)若实数满足不等式组则的最小值是 【解析】通过画出其线性规划,可知直线过点时,5.(2007年山东理14)设是不等式组表示的平面区域,则中的点到直线距离的最大值是_.【答案】:【分析】:画图确定可行域,从而确定到直线直线距离的最大为三.解答题 1.(2010年广东理19)(本小题满分12分) 某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 嗜酸性粒细胞炎症病理机制与临床管理
- 私立医院护理服务特色
- 戏曲脸谱汇报课
- 物联网安全技术体系
- 拼多多无货源电商模式讲解
- 2026届广西壮族自治区百色市田阳县田阳高中化学高一第一学期期中达标检测模拟试题含解析
- 学校剪纸社团汇报
- 外科手术医院感染之我见
- 县级人民医院痔疮诊疗体系
- 微地震监测技术
- 国企总经理竞聘面试题8套和专业题22问及答案
- 亚洲合作资金管理办法
- 低空经济相关政策文件
- 五年级语文上册快乐读书吧阅读记录卡《中国民间故事》
- 2025年社区专职干部招聘考试真题及答案
- 高等学校科学技术学术规范指南讲解
- 新课标培训课件2022
- 咖啡相关知识培训课件
- 新职工保密培训课件
- 核电经验反馈管理制度
- 2025-2030年中国滑雪板设备行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论