公务员备考方法.doc_第1页
公务员备考方法.doc_第2页
公务员备考方法.doc_第3页
公务员备考方法.doc_第4页
公务员备考方法.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

行测备考:数字推理的诀窍要熟练运用规律。拿到题目以后,怎样一眼就能大致判断出这道题目含有什么规律呢?这也是有章可循的。做题目时,我们能够在一秒之内做出的判断,就是一个数列项数的多少和数字变化幅度的大小,包括备选答案的数字的大小。根据这些信息我们就可以基本知道这个数列含有某种规律。比如,给出的数列项数较多,有6项以上,一般可以首先考虑运用交替、分组和组合拼凑规律等。如果项数少就3项,一般只能用乘方和组合拼凑。如果数字之间变化幅度比较大,呈几何级增长,多半要用到乘法、二级等比和乘方规律。剩下的可以考虑用加减法、等差及变式和质数规律。此外,还可以根据数字之间变化呈现的曲线来判断。比如,如果数字变化呈平缓的一条线,一般用加减法;如果数字变化呈现的线条比较陡,或者斜率绝对值较大,可以考虑用乘法、二级等比和乘方等;如果呈现抛物线形态,可考虑用乘方、质数等;呈U型线可考虑用减法、除法和乘方等;如果大小变动呈波浪线,主要考虑交替和分组。行测数字推理的技巧公务员考试中,数字推理是很重要的一部分,尽管它占的分值不多,但它的影响很大。这样的题目看似很简单,当你做题之后,往往会陷入做之不出、欲罢不能的境地,大多数考生很难在给出的时间里做出答案,一般要花费双倍或更多的时间,对后面的答题一很有大的影响。如何在规定的时间内或者在较短的时间里做出题目呢?首先,要准确理解什么是数字推理。常规题型是给出一个缺少一项的数列,这个数列含有某种规律,要求考生运用这种规律从四个备选答案中选出一个填到数列的空缺处。我们在答题时,首先就要找出数列中含有什么规律,再按照这种规律从四个选项中选出答案。这里需要注意的是,这个数列可能包含多种规律,哪一个规律能用呢?这还要根据四个备选项来确定。其次,要善于总结规律。数字推理题的解题关键就在于找规律,它的计算量不大,找到规律后很快就能得出答案。各类参考书和辅导班的老师总结的都很好,大同小异吧!关键是能不能把这些东西变成你自己的?最好的选择还是自己去总结,我建议在理解题型的基础上去总结规律。题目给出的是数列,就是一些数字的排列,能含有什么规律,无外乎两个方面,一是从“数”上去总结,就是数字本身或数字之间含有某些规律。如,具有相同性质的数排在一起,呈现为奇偶数、质数规律等,还可以根据数的运算关系来排列,呈现为加减法、乘除和乘方等规律。二是从“列”上去着眼,按照数列的性质,呈现出等差、等比规律。还可以根据数列的排列形式,呈现出双重交替、分组、组合拼凑以及圆圈等。具体规律名称叫什么这并不重要,只要你熟知能用就行了。掌握了这些基本规律之后,在此基础上尽可能发挥你的想象力,思考一下这些基本题型还可以有哪些变化形式,你能够变化引申的越多,你的胜算就越大。第三,要熟练运用规律。拿到题目以后,怎样一眼就能大致判断出这道题目含有什么规律呢?这也是有章可循的。做题目时,我们能够在一秒之内做出的判断,就是一个数列项数的多少和数字变化幅度的大小,包括备选答案的数字的大小。根据这些信息我们就可以基本知道这个数列含有某种规律。比如,给出的数列项数较多,有6项以上,一般可以首先考虑运用交替、分组和组合拼凑规律等。如果项数少就3项,一般只能用乘方和组合拼凑。如果数字之间变化幅度比较大,呈几何级增长,多半要用到乘法、二级等比和乘方规律。剩下的可以考虑用加减法、等差及变式和质数规律。此外,还可以根据数字之间变化呈现的曲线来判断。比如,如果数字变化呈平缓的一条线,一般用加减法;如果数字变化呈现的线条比较陡,或者斜率绝对值较大,可以考虑用乘法、二级等比和乘方等;如果呈现抛物线形态,可考虑用乘方、质数等;呈U型线可考虑用减法、除法和乘方等;如果大小变动呈波浪线,主要考虑交替和分组。我们可以以2006年中央、国家机关招考录用公务员的5道题目为例:102,96,108,84,132,( )A.36 B.64 C.70 D.72拿到题一看,数列5项呈现一大一小的波浪型,可知运用交替规律,进一步思考就可得出结果是A;1,32,81,64,25,(),1A.5 B.6 C.10 D.12数字由小到大再到小,立即考虑使用乘方规律。本题就是乘方规律的变化运用,底数分别是1,2,3,4,5,6,对应的指数分别是6,5,4,3,2,1。-2,-8,0,64,( )A.-64 B.128 C.156 D.250可以看出给出的数字稍加变化都是一些数的乘方,分析一下可知是自然数1,2,3,4立方的各项,对应乘以另一个数列-2,-1,0,1所得,下一个应该是5的立方乘以2,得出答案是D。2,3,13,175,( )A.30625 B.30651 C.30759 D.30952这道题更加明显,四个选项的数字很大,必用乘方规律。可以看出175的平方是30625,但不适用前面项,又知30651比175的平方大26,恰好是前一项13的2倍。推算可知,前项的2倍加上后项的平方等于第三项,因此,答案就是B。3,7,16,107,( )A.1707 B.1704 C.1086 D.1072同样,这道题的四个选项也比较大,但可以看出这些数和一些数的乘方离得较远。再看能不能用乘法呢?从前两项直接是看不出的,但是我们发现16与107的积和1707相近,相差5,往前推发现,前两项的积减去5就等于后一项,因此答案是A。最后,在利用这些规律的时候,还必须掌握一些基本的数理知识。如100以内的质数,30以内的自然数的平方,10以内的自然数立方,尾数是5的数的平方的速算,以及一些整数整除的速算法则等,你只要把这些知识简单的复习一下就可以了。再加上适当的训练,还有什么题目做不出来呢?毕竟出题的思路就这么多。量关系核心公式汇总帖1、弃9验算法:利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。用此方法验算,首先要找出一个数的“弃9数”,即把一个数的各个数位上的数字相加,如果和大于9或等于9都要减去9,直至剩下的一个小于9的数,我们把这个数称为原数的“弃9数”。对于加减乘运算,可利用原数的弃九数替代进行运算,结果弃九数与原数运算后的弃九数相等注:1.弃九法不适合除法2.当一个数的几个数码相同,但0的个数不同,或数字顺序颠倒,或小数点的位置不同时,它的弃9数却是相等的。这样就导致弃9数虽相同,而数的实际大小却不相同的情况,这一点要特别注意2、传球问题核心公式N个人传M次球,记X=(N-1)M/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数3、整体消去法在较复杂的计算中,可以将近似的数化为相同,从而作为一个整体消去4、裂项公式1/n(n-k) =1/k (1/(n-k)-1/n)5、平方数列求和公式12+22+32+n2=1/6 n(n+1)(2n+1)6、立方数列求和公式13+23+33+n3=1/2 n(n+1) 27、行程问题(1)分别从两地同时出发的多次相遇问题中,第N次相遇时,每人走过的路程等于他们第一次相遇时各自所走路程的(2n-1)倍(2)A.B距离为S,从A到B速度为V_1,从B回到A速度为V_2,则全程平均速度V= (2V_1 V_2)/(V_1+V_2 ),(3)沿途数车问题:(同方向)相邻两车的发车时间间隔车速=(同方向)相邻两车的间隔(4)环形运动问题:异向而行,则相邻两次相遇间所走的路程和为周长同向而行,则相邻两次相遇间所走的路程差为周长(5)自动扶梯问题能看到的级数=(人 速+扶梯速)顺行运动所需时间能看到的级数=(人 速-扶梯速)逆行运动所需时间(6)错车问题对方车长为路程和,是相遇问题路程和=速度和时间(7)队伍行走问题V_1为传令兵速度,V_2为队伍速度,L为队伍长度,则从队尾到队首的时间为:L/(V_1-V_2 )从队首到队尾的时间为:L/(V_1+V_2 )8、比赛场次问题N为参赛选手数,淘汰赛仅需决出冠亚军比赛场次=N-1,淘汰赛需决出前四名比赛场次=N,单循环赛比赛场次=_N2,双循环赛比赛场次=A_N29、植树问题两端植树: 距离/间隔+1 = 棵数一端植树(环形植树): 距离/间隔= 棵数俩端均不植树:距离/间隔-1=棵数双边植树:(距离/间隔-1)*2=棵数10、方阵问题最为层每边人数为N方阵总人数=N2最外层总人数=(N-1)4相邻两层总人数差=8(行数和列数3)去掉一行一列则少(2N-1)人空心方阵总人数=(最外层每边人数-层数)层数411、几何问题N边形内角和=(N-2)180球体体积=4/3 r3圆柱体积=r2 h圆柱体积=1/3 r2 h12、牛吃草问题(牛头数-每天长草量)天数=最初总草量13、日期问题一年加1,闰年加2,小月(30天)加2,大月(31天)加3,28年一周期4年1闰,100年不闰,400年再闰14、页码问题如:一本书的页码一共用了270个数字,求这本书的页数。页数=(270+129)/3=126页公式:10-99页:页数=(数字+19)/2100-999页:页数=(数字+129)/31000-9999页:页数=(数字+1239)/415、时钟问题小知识:时针与分针一昼夜重合22次,垂直44次,成180,也是22次求时针与分针成一定角度时的实际时间TT=T_0+1/11 T_0,其中T_0为时针不动时,分针走到符合题意位置所需的时间16、非闭合路径货物集中问题在非闭合的路径上(包括线形、树形等,不包括环形)有多个节点,每个节点之间通过“路”来连通,每个节点上有一定的货物。当需要用优化的方法把货物集中到一个节点上的时候,通过以下方式判断货物流通的方向:1、判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重的一侧。2、适用于“非闭合”的路径问题,与各条路径的长短没有关系;实际操作中,我们应该从中间开始分析,这样可以更快得到答案。1、在一条公路上每隔100公里有一个仓库,共有5个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,则最少需要运费( )。A. 4500元 B. 5000元 C. 5500元 D. 6000元解析:本题中四条“路”都具备“左边总重量 轻于 右边总重量”的条件,所以这些“路”上的流通方式都是从左到右。故集中到五号仓库是最优选择。公务员考试行测数量关系秒杀四法秒杀一法:代入法代入法是考试中经常会用到的一种快速计算方法,经常用于诸如以下描述的题目中:“一个数”满足某种特点,或题目中所要求解的数据在选项中都已经给出来。例题1:一个数除以11余3,除以8余4,除以7余1,问这个数最小是多少?A.36 B.55C.78 D.122解析:从最小的选项开始代入,因为这道题问的就是这个数最小是多少。代入36发现符合条件所描述的情况,直接选定答案即可。例题2:甲、乙、丙三种软糖,甲种每块0.08元,乙种每块0.05元,丙种每块0.03元,买10块共用0.54元,求三种糖各买几块?( )A.4、2、4 B.4、3、3C.3、4、3 D.3、3、4解析:从A项开始代入,只要满足条件一:三种软糖的个数为10,条件二:三种软糖的价格数位0.54,就是正确选项。A项,4+2+4=10,4*0.08+2*0.05+4*0.03=0.54,所以选择A项。秒杀二法:特值法工程问题中的设1思想的本质就是采用设定特值来解决问题,这种方法一般用于所要求的结果是一个比例,如几分之几或百分之几,或者设定的数值对于解题没有影响。例题3:李森在一次村委会选举中,需2/3的选票才能当选,当统计完3/5的选票时,他得到的选票数已达到当选票数的3/4,他还需要得到剩下选票的几分之几才能当选?( )A.7/10 B.8/11 C.5/12 D.3/10解析:这道题最后问的是一个比值,所以总票数是多少对于计算结果没有影响,所以我们可以给总票数设定一个特值来方便求解。一般设定这个特值选择分数分母的公倍数,方便化简。这道题我们可以选择60。那么需要40票才能当选,当统计完36票时,他得到了40*3/4=30票,他还差10票。剩下的票数是60-36=24票,所以10/24=5/12就是正确答案。秒杀三法:答案选项法行测题目的答案之间有诸多联系,比如题目中如果指出两个量的和是多少,或甲比乙多出多少,一般选项中会出现某两个选项存在这样的等量关系,我们可以据此直接根据选项来判断出答案来。例题4:一队战士排成三层空心方阵多出9人,如果在空心部分再增加一层,又差7人,问这队战士共有多少人?( )A.121 B.81 C.96 D.105解析:这道题的常规解法是求出空心部分增加的一层人数为9+7=16,根据方阵中每层人数相差8得出这三层人数分别为24,32,40,相加得96,再加上多出来的9人,共105人。答案选项法是直接观察CD两项,差值为9,所以这道题就是利用很多考生计算出三层人数后忘记加9而错选C选项,可以迅速选择D项为正确答案。秒杀四法:整除特性法题目如果有某个数值的几分之几这样的字眼,我们可以很容易的判断某个数值是常见数字如2,3,5,11等的倍数,如甲的4/11是女的,我们可以判定甲的总数为11的倍数,而甲中女的数量为4的倍数。例题5:两个数的差是2345,两数相除的商是8,求这两个数之和。( )A. 2353 B. 2896 C. 3015 D. 3457解析:两数相除的商是8,也就是其中一个数是另一个数的8倍,那么这两个数的和就是其中小一点的那个数字的9倍,所以说两数之和为9的倍数,在选项中只有C项是9的倍数。2013国考行测数学运算六大重点题型及攻略基础计算是国考必考的题型,主要包括等差数列的计算、约数和倍数问题、日期和时间问题。这类题型难度较低,且解题方法较为成熟,考生只需牢记相关的知识点和公式。重点掌握等差数列的几个求和公式、约数和倍数的计算方法、日期和时间问题的口诀等。方程问题最熟悉,数字特性心中记很多考生都擅长用方程法,每年均有几个题目可以通过方程法攻克。但快速解方程却让很多考生望而却步。在正确列方程后,考生可结合选项,利用数字特性和代入法快速锁定答案。数字特性包括奇偶特性、倍数特性、尾数特性等。比例问题是重点,赋值列表列方程比例问题包括工程问题、经济问题、行程问题和溶液问题,其中前三者为每年的必考题型。工程问题的常用方法是赋值法和列表分析。当已知工作时间时,可赋值工作总量。当题目有工作效率的比值时,可赋值工作效率。当合作主体较多或合作过程较复杂时,可采用列表法。经济问题分为利润折扣类及分段计费类。前者主要采用赋值法和列表列方程法进行求解。分段计费类难度较低,考生需根据题意列出关系式并计算。行程问题是考察的重点和难点。考生一方面要掌握相遇追及运动式、流水行船、等距离平均速度和等发车前后过车的公式,另一方面需要灵活运用比例法、赋值法、方程法等,结合作图进行求解。溶液问题难度较小,考生需要掌握溶液浓度、溶液稀释的计算公式,灵活运用方程法、十字交叉法和赋值法进行求解。几何问题年年有,熟记公式巧构思几何问题为必考题型,主要考察长度、面积、体积,难度较小,考生必须熟记公式,不规则图形求解时还需要用到割补平移法。计数问题家族大,理清原理用公式计数问题包括容斥原理、排列组合、植树问题、方阵问题、过河问题等。考生需要在理解原理的基础上,活用公式求解。同时,要注意题目的变形及关联,如容斥原理本质为去重复问题,而爬楼梯问题是植树问题的变形。最值问题变形多,最值思想最关键最值问题主要包括抽屉原理、多集合问题、构造问题。抽屉原理和多集合问题的解题方法较为成熟。但构造问题的变形较多,且难度较大,考生要结合典型例题,建立最值思想,探究最值情况,构造数列和不等式进行求解。第一部分、数字推理一、基本要求 熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。 自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400 自然数立方数列:8,1,0,1,8,27,64,125,216,343,512,729,1000 质数数列: 2,3,5,7,11,13,17(注意倒序,如17,13,11,7,5,3,2) 合数数列: 4,6,8,9,10,12,14.(注意倒序)二、解题思路: 1 基本思路:第一反应是两项间相减,相除,平方,立方。所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。 相减,是否二级等差。 8,15,24,35,(48) 相除,如商约有规律,则为隐藏等比。 4,7,15,29,59,(59*21)初看相领项的商约为2,再看4*2-1=7,7*2+1152特殊观察:? 项很多,分组。三个一组,两个一组 4,3,1,12,9,3,17,5,(12) 三个一组 19,4,18,3,16,1,17,(2) 2,1,4,0,5,4,7,9,11,(14)两项和为平方数列。 400,200,380,190,350,170,300,(130)两项差为等差数列? 隔项,是否有规律? 0,12,24,14,120,16(737) 数字从小到大到小,与指数有关 1,32,81,64,25,6,1,1/8?隔项,是否有规律? ? 0,12,24,14,120,16(737) 每个数都两个数以上,考虑拆分相加(相乘)法。 87,57,36,19,(1*9+1) 256,269,286,302,(302+3+0+2)? 数跳得大,与次方(不是特别大),乘法(跳得很大)有关 1,2,6,42,(422+42) 3,7,16,107,(16*107-5)? ?每三项/二项相加,是否有规律。? ?1,2,5,20,39,(1252039) 21,15,34,30,51,(102-51)? C=A2B及变形(看到前面都是正数,突然一个负数,可以试试) 3,5,4,21,(42-21),446 5,6,19,17,344,(-55) -1,0,1,2,9,(93+1)? C=A2+B及变形(数字变化较大) 1,6,7,43,(49+43) 1,2,5,27,(5+272)? ?分数,通分,使分子/分母相同,或者分子分母之间有联系。/也有考虑到等比的可能 2/3,1/3,2/9,1/6,(2/15) 3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列 1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。 3,2,7/2,12/5,(12/1)? 通分,3,2 变形为3/1,6/3,则各项分子、分母差为质数数列。 64,48,36,27,81/4,(243/16)等比数列。 出现三个连续自然数,则要考虑合数数列变种的可能。 7,9,11,12,13,(12+3) 8,12,16,18,20,(12*2) 突然出现非正常的数,考虑C项等于 A项和B项之间加减乘除,或者与常数/数列的变形 2,1,7,23,83,(A*2+B*3)思路是将C化为A与B的变形,再尝试是否正确。 1,3,4,7,11,(18) 8,5,3,2,1,1,(11)? ?首尾项的关系,出现大小乱现的规律就要考虑。 3,6,4,(18),12,24 首尾相乘 10,4,3,5,4,(2)首尾相加 旁边两项(如a1,a3)与中间项(如a2)的关系 1,4,3,1,4,3,( 3(4) ) 1/2,1/6,1/3,2,6,3,(1/2)? ?B项等于A项乘一个数后加减一个常数 3,5,9,17,(33) 5,6,8,12,20,(20*24) 如果出现从大排到小的数,可能是A项等于B项与C项之间加减乘除。 157,65,27,11,5,(11-5*2) 一个数反复出现可能是次方关系,也可能是差值关系 1,2,1,2,(7) 差值是2级等差 1,0,1,0,7,(2662) 1,0,1,8,9,(41) 除3求余题,做题没想法时,试试(亦有除5求余) 4,9,1,3,7,6,( C) A.5 B.6. C.7 D.8 (余数是1,0,1,0,10,1)3.怪题: 日期型 210029,2100213,2100218,2100224,(2100-3-3) 结绳计数 1212,2122,3211,131221,(311322) 2122指1212有2个1,2个2.?第一部分、数字推理一、基本要求 熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。 自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400 自然数立方数列:8,1,0,1,8,27,64,125,216,343,512,729,1000 质数数列: 2,3,5,7,11,13,17(注意倒序,如17,13,11,7,5,3,2) 合数数列: 4,6,8,9,10,12,14.(注意倒序)二、解题思路: 1 基本思路:第一反应是两项间相减,相除,平方,立方。所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。 相减,是否二级等差。 8,15,24,35,(48) 相除,如商约有规律,则为隐藏等比。 4,7,15,29,59,(59*21)初看相领项的商约为2,再看4*2-1=7,7*2+1152特殊观察:? 项很多,分组。三个一组,两个一组 4,3,1,12,9,3,17,5,(12) 三个一组 19,4,18,3,16,1,17,(2) 2,1,4,0,5,4,7,9,11,(14)两项和为平方数列。 400,200,380,190,350,170,300,(130)两项差为等差数列? 隔项,是否有规律? 0,12,24,14,120,16(737) 数字从小到大到小,与指数有关 1,32,81,64,25,6,1,1/8?隔项,是否有规律? ? 0,12,24,14,120,16(737) 每个数都两个数以上,考虑拆分相加(相乘)法。 87,57,36,19,(1*9+1) 256,269,286,302,(302+3+0+2)? 数跳得大,与次方(不是特别大),乘法(跳得很大)有关 1,2,6,42,(422+42) 3,7,16,107,(16*107-5)? ?每三项/二项相加,是否有规律。? ?1,2,5,20,39,(1252039) 21,15,34,30,51,(102-51)? C=A2B及变形(看到前面都是正数,突然一个负数,可以试试) 3,5,4,21,(42-21),446 5,6,19,17,344,(-55) -1,0,1,2,9,(93+1)? C=A2+B及变形(数字变化较大) 1,6,7,43,(49+43) 1,2,5,27,(5+272)? ?分数,通分,使分子/分母相同,或者分子分母之间有联系。/也有考虑到等比的可能 2/3,1/3,2/9,1/6,(2/15) 3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列 1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。 3,2,7/2,12/5,(12/1)? 通分,3,2 变形为3/1,6/3,则各项分子、分母差为质数数列。 64,48,36,27,81/4,(243/16)等比数列。 出现三个连续自然数,则要考虑合数数列变种的可能。 7,9,11,12,13,(12+3) 8,12,16,18,20,(12*2) 突然出现非正常的数,考虑C项等于 A项和B项之间加减乘除,或者与常数/数列的变形 2,1,7,23,83,(A*2+B*3)思路是将C化为A与B的变形,再尝试是否正确。 1,3,4,7,11,(18) 8,5,3,2,1,1,(11)? ?首尾项的关系,出现大小乱现的规律就要考虑。 3,6,4,(18),12,24 首尾相乘 10,4,3,5,4,(2)首尾相加 旁边两项(如a1,a3)与中间项(如a2)的关系 1,4,3,1,4,3,( 3(4) ) 1/2,1/6,1/3,2,6,3,(1/2)? ?B项等于A项乘一个数后加减一个常数 3,5,9,17,(33) 5,6,8,12,20,(20*24) 如果出现从大排到小的数,可能是A项等于B项与C项之间加减乘除。 157,65,27,11,5,(11-5*2) 一个数反复出现可能是次方关系,也可能是差值关系 1,2,1,2,(7) 差值是2级等差 1,0,1,0,7,(2662) 1,0,1,8,9,(41) 除3求余题,做题没想法时,试试(亦有除5求余) 4,9,1,3,7,6,( C) A.5 B.6. C.7 D.8 (余数是1,0,1,0,10,1)3.怪题: 日期型 210029,2100213,2100218,2100224,(2100-3-3) 结绳计数 1212,2122,3211,131221,(311322) 2122指1212有2个1,2个2.?第二部分、图形推理一 基本思路:看是否相加,相减,求同,留同存异,去同相加,相加再去同,一笔划问题,笔划数,线条数,旋转,黑白相间,轴对称/中心对称,旋转,或者答案只有一个图可能通过旋转转成。视觉推理偏向奇偶项,回到初始位置. 注:5角星不是中心对称二特殊思路:1.有阴影的图形 可能与面积有关,或者阴影在旋转,还有就是黑白相间。第一组,1/2 1/4 1/4 第二组,1,1/2, (1/2 A) 两个阴影,里面逆时针转,外面顺时针转。 2 交点个数 一般都表现在相交露头的交点上 或者一条线段穿过多边形交点数为,3,3,3 第二组为3,3,(3)交点数为,1,1,1 第二组为2,2,(2) 但是,露头的交点还有其它情形。此题算S形,露头数,1,3,5,7,9,11,(13 B ),15,173. 如果一组图形的每个元素有很多种,则可从以下思路,元素不同种类的个数,或者元素的个数。出现一堆乱七八遭的图形,要考虑此种可能。第一组2,4,6种元素,第二组,1,3,(5)种类,1,2,3,4(5)元素个数为4,4,4 4,4,(4)4.包含的块数 / 分割的块数 出现一些乱七八遭的图形,或者出现明显的空间数,要考虑此种可能。包含的块数,1,2,3,4,5,(6,B)分割的块数为,3,3,3,3,3,(3,A)5.特点是,大部分有两种不同元素,每个图形两种类个数各不相同。圆形相当于两个方框,这样,全都是八个方框,选D6.角个数 只要出现成角度图形都需要注意3,4,5,6,(7)7.直线/曲线出现时,有可能是,线条数。或者,都含曲线,都含直线,答案都不含直线,都不含曲线。线条数是,3,3,3 4,4,4 8. 当出现英文字母时,有可能是笔划数,有可能是是否直线/曲线问题,又或者是相隔一定数的字母。如, C S U , D B ? A.P B.O C.L D.R 分析:C,S,U都是一笔, D,B,P都是两笔。分析:B,Q,P都含直线,曲线。A,V,L都只含直线。K,M,O D,F,? A.L B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论