




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Problem 1Calculate the variation in H and b= CfU2 in x upstream of x1 (here set equal to 0) until H is within 1 percent of Hn.A WORKED EXAMPLE (constant Cz):S = 0.00025 Cz= 22 qw= 5.7 m2/s D = 0.6 mmR = 1.65 H1= 30m Hn= 3.01m Hc= 1.49mSolution:where program mainfs=0.00025fCz=22fqw=5.7fg=9.81fdx=3000fH1=30 fdH=3.01fH=fH150if(fH-fdH)0.01*fdH) thenfsH1=fCz*2.0*fqw*2.0/(fg*fH1*3.0)fno=1-fqW*2.0/(fg*fH1*3.0)ffH1=(fs-fsH1)/fnofH=fH1+fdx*ffH1print*, fHpausefdh=fHgoto 50endifendHn+ =2.928926543,Hn- =3.739186042,Cf+ =0.00143480257120,Cf- =0.0032283057851Sheet 1xSfFr2H+Ub01.7599854848E-070.00012266394835300.190.05179637281940001.9482861183E-070.000135787749329.0005814020.196547783680.05542790299480002.1644210827E-070.0001508514917828.0012250160.20356252260.059454919373120002.4137258667E-070.00016822703827.001940040.211095943160.063936950784160002.7028107528E-070.0001883750982326.0027374380.219207689710.068945149262200003.0399304022E-070.0002118709893125.0036303550.227966895970.074565119457240003.435480976E-070.000239439282124.0046346690.237454144940.080900583892280003.9026764405E-070.0002720009371923.0057696940.247763933820.088078177948320004.4584799723E-070.0003107382201522.0070591150.259007801560.096253789698360005.1249037876E-070.0003571852943821.0085322260.271318335740.10562103896400005.9308493791E-070.0004133564783320.0102256070.284854359560.11642275907440006.9147539012E-070.000481930687919.01218540.299807722250.12896675609480008.1284614047E-070.0005665212460618.0144704730.316412298030.14364775933520009.6429928358E-070.0006720780286817.0171568580.334956070960.16097849155560001.1557325066E-060.0008054993277816.0203441190.35579760070.18163443048600001.4012055507E-060.0009765842206115.0241646270.379388814050.20651955956640001.7211214664E-060.001199552817214.0287973890.406307101160.23686504312680002.1458077305E-060.001495542155913.034489150.437301372870.27438086937720002.7215832142E-060.00189683463712.0415874550.473359515220.32149510826760003.5214049984E-060.002454278427711.0505940370.515809374680.38174258352800004.6643058772E-060.003250834624210.0622539950.56647347630.46041695269840006.3524878956E-060.00442742996379.0777106310.62791162130.56570392012880008.9456727168E-060.00623477605678.09878646440.703809147840.71072560344920001.3118215981E-050.00914287180987.12851975960.799604994050.91736706054960002.0208887973E-050.0140847865616923488257791.22364348351000003.3028621118E-050.0230196277745.23995393471.08779582251.69780152571040005.7666045677E-050.0401909271954.35161928621.30985723362.46172803671080000.000106209334980.0740236581063.55006839541.60560286883.69886445741120000.000189124333610.131812095562.92892654321.94610548135.4340658635Graph 1Sheet 2xSfFr2H-Ub03.9599673409E-070.00012266394835300.190.1165418388440004.38324469E-070.0001357753875229.0014615020.196541819090.1247052125980004.868980107E-070.0001508215277928.0030792440.203549043670.1337558535120005.4291118896E-070.0001681721698927.0048762860.211072990660.14382685752160006.0784185592E-070.0001882850932926.0068800960.219172771940.15507716929200006.8353372875E-070.0002117314078225.00912360.227916823120.16769782497240007.7230623883E-070.0002392295805424.0116465380.23738480370.18192001882280008.7710360031E-070.0002716916112323.0144972150.247669977170.19802562498320001.0016995024E-060.0003102864378722.0177348180.258882216870.21636106085360001.1509817753E-060.0003565281147121.0214324770.271151835460.23735575243400001.3313537369E-060.0004124001335520.025681390.28463450950.26154701704440001.5513084909E-060.0004805333181419.0305964320.299517675140.28961401641480001.8222639847E-060.0005644644919118.0363238850.316028922320.32242471508520002.1597985244E-060.0006690191909317.0430522750.334447134710.36110177531560002.5855136131E-060.000800888696816.0510277850.355117446450.40711647977600003.1299007814E-060.0009695180660415.0605765980.378471565330.46242486365640003.8368526596E-060.001188503479814.0721378920.405055723840.52966858024680004.7709338288E-060.001477844462813.0863136480.435569569360.61247691682720006.0294053148E-060.001867668590312.1039455960.470920821230.7159298162760007.7626575424E-060.002404560800311.1262371820.512302578760.84728154765800001.0209905097E-050.003162620202810.1549522980.561302488931.0171115834840001.3763192527E-050.00426328651719.19274883450.62005392541.2411766219880001.9084466193E-050.0059116042488.24375577530.691432419321.5433845251920002.732017476E-050.00846269733357.31460084380.779263301131.9603928606960004.0476745197E-050.0125380765926.41627931970.888365315162.54775611181000006.195326611E-050.019190643715.56754480211.0237905943.3837396061040009.6640199991E-050.0299352683494.800640478915512009371080000.000147634373790.0457312236254.16827113281.36747342446.03687876611120000.000204514519810.0633504176573.73918604171.52439593447.5018819889Graph 237Problem 2Calculate sediment fall velocity using formulations of Dietrich EW (1982) and Zhang RJ (textbook, page 48-50)g= 9.81 m/s2R= 1.65 (quartz)= 1.00x10-6m2/s(water at 20 degree at Celsius)= 1000 kg/m3(water)Solution:We know Vs (Zhang RJ):Then use the formula:where and b1=2.891394 b2=0.95296 b3=0.056835 b4=0.002892 b5=0.000245D (mm)D(m)RepRfVs (Dietrich)Vs (Zhang RJ)0.0313 0.00003 0.7025 0.0394 0.0009 0.0006 0.0625 0.00006 1.9869 0.1039 0.0033 0.0025 0.1250.00013 5.6198 0.2371 0.0107 0.0095 0.25 0.00025 15.8952 0.4294 0.0273 0.0309 0.5 0.00050 44.9583 0.5256 0.0473 0.0700 10.00100 127.1613 0.3439 0.0437 0.1195 2 0.00200 359.6665 0.0883 0.0159 0.1809 we can get Rf.Finally we can get the Vs (Dietrich) using the formula Conclusion:The figure told us that there is no difference between Vs (Dietrich) and Vs(Zhang RJ) when D less than 0.5mm,but the sediment fall velocity calculated by Zhang RJ is smaller than that calculated by Dietrich when D0.5mm.Both of the two formulations use the condition of equilibrium Fg=Fd in the formulation of Dietrich.while in the formulation of Zhang RJ, He take the particle irregularity in shape into condition. As we all know, the effect of sediment fall velocity is small to fine sediment particle, and the effect is increasing as the increasing of the size of particle. The result and analysis consist.Problem 3Consider the incipient motion of sediment in open channel flow. Let sediment particle diameter d varies from 0.01 mm to 10 mm.(1) Calculate the critical bed shear velocity u* for incipient motion of the sediment specified above, using the formulation by Brownlie(1981).(2) Calculate the critical mean velocity Uc for incipient motion of the sediment specified above, based on the critical bed shear velocity obtained above and the integration along flow depth of the log velocity distribution. Here let flow depth h=0.15 m, and roughness height Ks=2d.(3) Plot Uc (cm/s) against d(mm) in a log-log coordinate setting.refer to Figure 4-6, page 70 on textbook.We know that:g= 9.81 m/s2 R= 1.65 = 1.0106m2/s= 1000kg/m3 = 0.4 Solution:(1) We can get the critical Shields number:Where Then we can easily get .(2) If 100,B=8.5,the near-wall flow is in hydraulically smooth regimes.If 3 ,B =5.5+ln,the near-wall flow is in hydraulically rough regimes.If 3100, B should be calculated by the diagram B against as follows.we can get flow velocity averaged over turbulence Finally we integrate the equation and get the UcThe tableDRep*u*u*ks/v0.000010.1272261770.7580132470.0110768140.2215362850.000020.3598499690.4062092410.0114674370.4586974910.000041.0178094120.2176821440.0118718360.9497468490.000082.878799750.116657930.0122907561.9665209810.000168.1424752990.0629020080.0127634694.0843100110.0003223.0303980.0375330580.0139430718.923565470.0006465.139802390.0320718770.01822756523.331282860.00128184.2431840.037254130.02778233171.122766550.00256521.11841920.0447569960.043065245220.49405520.005121473.9454720.0507865230.064876244664.33273840.014023.2449590.0546272920.0940332211880.66442BuCLOGDLOGuC1.7320777830.23858044-21.3776348353.5515891320.247987539-1.698971.3944298585.3711004890.257761418-1.397940011.4112179127.1906649550.26792259-1.096910011.4280093338.4410914920.272069489-0.795880021.434679849.3073182190.285130563-0.494850021.4550437729.3518746350.341973041-0.193820031.5339918718.8208581490.4583370070.107209971.6611849248.50.6220215730.4082399651.7938054488.50.824631180.7092699611.9162597528.51.03786887912.016142489(3) We Plot Uc (cm/s) against d(mm) in a log-log coordinate setting as follow.Then compare it with Figure 4-6page 70 on textbook,we can find it work good when D is greater than 0.17 mm, but the trend is ascending while Figure 4-6 is opposite when D is smaller.We surmise that this phenomenon is behind that Shields number is required to initiate motion of the grains of a bed composed of non-cohesive particles and we ignore the impact of cohesive force using the formula Plot Uc (cm/s) against d(mm)Problem 4Consider steady and uniform open channel flow.The turbulent eddy viscosity is (1) derive the time-average velocity profile (let =0.2)(2)assume the turbulent diffusion coefficient of suspended sediment is equal to the turbulent eddy viscosity,calculate the profile of relative suspended sediment concentration along the flow depth,and compare it with the Rouse formula in a figure for suspension index z=/u* =0.05, 0.2, 0.6, 1.5.(numerical integration may be used)Solution :(1) For full turbulent flow,the Reynolds stress is usually far in excess of the viscous stress,which can be dropped.We can get this equation:Remove at the two sides ,so we can integrate this equation:So the time-average velocity profile of the flow depth is :(1) Assume the turbulent diffusion coefficient of suspended sediment is equal to the turbulent eddy viscosity, so we can get the balance of the suspension equation as: According to , Then we get:Then we calculate the integration by the way of numerical integration. Where z=0.1h, we can calculate the integration approximately as:.So we get the relative suspended sediment concentration along the flow depth as follows:While the Rouse formulaSupposing ,we can get the data in Table 1 and plot z/h againstin the Table 1. And if we let z=/u* vary as 0.05 , 0.2 , 0.6 , 1.5 and compare these two formulation in a graph, we can get eight curves as Graph 1. Table c/cbs=0.05s=0.2s=0.6s=1.5t=z/hf(t)AiCalRouseCalRouseCalRouseCalRouse0.100111111110.120.262840.002630.989680.98981 0.95936 0.95987 0.88298 0.88437 0.73262 0.140.311080.008370.980670.98108 0.92491 0.92646 0.79122 0.79520 0.55685 0.56389 0.160.360350.015080.972680.97341 0.89510 0.89781 0.71717 0.72369 0.43556 0.44553 0.180.410570.022790.965430.96653 0.86872 0.87269 0.65560 0.66463 0.34802 0.36012 0.20.461650.031510.958750.96026 0.84494 0.85028 0.60322 0.61474 0.28262 0.29630 0.220.513470.041260.952520.95449 0.82319 0.83001 0.55783 0.57182 0.23241 0.24725 0.240.565940.052060.946650.94911 0.80306 0.81147 0.51791 0.53434 0.19303 0.20871 0.260.618950.063910.941050.94406 0.78425 0.79433 0.48234 0.50120 0.16158 0.17784 0.280.672400.076820.935680.93928 0.76650 0.77837 0.45034 0.47158 0.13610 0.15272 0.30.726170.090810.930500.93473 0.74965 0.76339 0.42129 0.44488 0.11520 0.13201 0.320.780160.105870.925460.93037 0.73355 0.74924 0.39471 0.42060 0.09788 0.11473 0.340.834240.122010.920540.92617 0.71807 0.73581 0.37025 0.39838 0.08342 0.10017 0.360.888310.139240.915710.92211 0.70313 0.72298 0.34761 0.37790 0.07124 0.08779 0.380.942250.157550.910960.91816 0.68863 0.71068 0.32656 0.35894 0.06094 0.07719 0.40.995940.176930.906260.91431 0.67453 0.69883 0.30691 0.34128 0.05218 0.06804 0.421.049270.197380.901590.91054 0.66076 0.68736 0.28849 0.32476 0.04470 0.06010 0.441.102120.218890.896960.90683 0.64727 0.67624 0.27118 0.30924 0.03830 0.05318 0.461.154380.241460.892330.90317 0.63402 0.66539 0.25487 0.29460 0.03279 0.04711 0.481.205920.265060.887710.89955 0.62098 0.65479 0.23947 0.28074 0.02806 0.04176 0.51.256640.289690.883070.89596 0.60812 0.64439 0.22489 0.26758 0.02398 0.03704 0.521.306410.315320.878420.89238 0.59540 0.63416 0.21107 0.25503 0.02047 0.03285 0.541.355140.341930.873740.88880 0.58281 0.62406 0.19796 0.24304 0.01744 0.02912 0.561.402700.369510.869020.88522 0.57031 0.61405 0.18549 0.23153 0.01482 0.02579 0.581.449000.398030.864240.88161 0.55788 0.60411 0.17363 0.22047 0.01256 0.02282 0.61.493920.427460.859410.87798 0.54551 0.59420 0.16234 0.20980 0.01062 0.02016 0.621.537360.457770.854510.87429 0.53317 0.58429 0.15157 0.19948 0.00894 0.01777 0.641.579220.488940.849530.87055 0.52084 0.57435 0.14129 0.18946 0.00750 0.01563 0.661.619410.520920.844450.86673 0.50850 0.56434 0.13148 0.17973 0.00627 0.01369 0.681.657830.553690.839260.86282 0.49612 0.55422 0.12211 0.17023 0.00521 0.01196 0.71.694400.587220.833950.85879 0.48367 0.54395 0.11315 0.16094 0.00431 0.01039 0.721.729030.621450.828480.85463 0.47113 0.53348 0.10457 0.15183 0.00354 0.00898 0.741.761630.656360.822850.85031 0.45845 0.52276 0.09635 0.14286 0.00288 0.00771 0.761.792140.691900.817020.84578 0.44559 0.51172 0.08847 0.13400 0.00233 0.00657 0.781.820480.728020.810950.84102 0.43250 0.50028 0.08090 0.12521 0.00186 0.00555 0.81.846580.764690.804600.83596 0.41910 0.48836 0.07361 0.11647 0.00147 0.00463 0.821.870390.801860.797900.83054 0.40532 0.47582 0.06659 0.10773 0.00114 0.00381 0.841.891840.839480.790770.82467 0.39102 0.46251 0.05979 0.09894 0.00087 0.00308 0.861.910890.877510.783090.81822 0.37606 0.44821 0.05318 0.09004 0.00065 0.00243 0.881.927500.915900.774700.81100 0.36019 0.43260 0.04673 0.08096 0.00047 0.00187 0.91.941610.954590.765330.80274 0.34307 0.41524 0.04038 0.07160 0.00033 0.00137 0.921.953210.993530.754530.79296 0.32413 0.39538 0.03405 0.06181 0.00021 0.00095 0.941.962251.032690.741510.78080 0.30231 0.37167 0.02763 0.05134 0.00013 0.00060 0.961.968731.072000.724430.76432 0.27542 0.34128 0.02089 0.03975 0.00006 0.00032 0.981.972621.111410.697660.73753 0.23691 0.29588 0.01330 0.02590 0.00002 0.00011 Conclusion:(1)We can learn about it that suspension index make difference in calculating the relative suspended sediment concentration along the flow depth. Its slightly change will affect the value of significantly.(2)It can be known that with the same suspension index, the value of derived from Rouse formula is bigger than that from the calculated formula. But both of them present the tendency that relative suspended sediment concentration varies along the flow depth.Problem 5Consider Run 20 of the flume experiments of Coleman (1986), find the best value of in the modified suspended index: for satisfactory agreement between profile of suspended sediment concentration calculated from the Rouse formula and measured data.Reference: Coleman.N.L(1986).Effects of suspended sediment on the open-channel velocity distribution.Water Resources Research,AGU,22(10),1377-1384.Solution:Table 2 : Measured dataZ(mm)6121824304669911221371521620.610.480.330.260.160.0760.040.020.011Get the following data from the textbook: D=0.015mm h=170mm Q=0.064m3/s u*=0.041m/s , T=23.9suspension indexFirst , we calculate by Zhang RJ formulation But we should figure out when T=23.9 before it.By linear Interpolation as follows :t05101520253040V(10-6m2/s)1.7921.5191.3081.1411.0070.8940.8010.656From the curve we see that v=0.96010-6m2/s at the temperature of 23.9.And we can calculate the settling velocity:=7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年山东省日照市高三上学期9月校际联考英语试题(解析版)
- 2025广东汕尾市陆河县高校毕业生就业见习招募15人(第三批)模拟试卷有答案详解
- 2025海南海口市秀英区事业单位招聘59人(第一号)模拟试卷及答案详解1套
- 2025江苏盐城市急救医疗中心招录政府购买服务用工1人模拟试卷附答案详解(黄金题型)
- 企业安全生产培训教育记录表
- 员工绩效评估标准工具
- 2025湖南省社会科学院(湖南省人民政府发展研究中心)招聘高层次人才14人模拟试卷完整参考答案详解
- 2025年金华永康市医疗卫生单位招聘事业单位工作人员39人考前自测高频考点模拟试题及1套参考答案详解
- 2025湖南湘西州泸溪县汇金产业投资集团有限公司招聘工作人员及模拟试卷有答案详解
- 2025甘肃平凉市灵台县公安局面向社会招聘警务辅助人员28人考前自测高频考点模拟试题有完整答案详解
- 2025民政如法考试题目及答案
- 2025年成人高考高起点理化综合真题及答案(完整)
- 甘肃国家电网招聘2026备考考试题库附答案解析
- 非遗文化活动演出方案策划
- 差旅费报销标准(2025财政版)
- 高考《数学大合集》专题突破强化训练往年高考抽象函数10题型归纳(原卷版)
- 2025年中国磁力积木行业市场全景分析及前景机遇研判报告
- 2025河北承德市市直事业单位卫生类招聘85人考试参考试题及答案解析
- 医院用消毒剂的配制课件
- GB/T 39281-2020气体保护电弧焊用高强钢实心焊丝
- GB/T 33815-2017铁矿石采选企业污水处理技术规范
评论
0/150
提交评论