高中数学 2.7向量应用举例课件 北师大版必修4.ppt_第1页
高中数学 2.7向量应用举例课件 北师大版必修4.ppt_第2页
高中数学 2.7向量应用举例课件 北师大版必修4.ppt_第3页
高中数学 2.7向量应用举例课件 北师大版必修4.ppt_第4页
高中数学 2.7向量应用举例课件 北师大版必修4.ppt_第5页
已阅读5页,还剩43页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7向量应用举例 题型示范 类型一向量在解析几何中的应用 典例1 1 2014 苏州高一检测 过点p 1 1 且法向量为n 4 3 的直线l的方程为 2 已知点a 1 2 直线l 4x 3y 9 0 求 过点a且与直线l平行的直线方程 过点a且与直线l垂直的直线方程 解题探究 1 直线l的法向量与直线有什么关系 2 如何由直线l方程中x y的系数确定题 2 中直线方程的斜率k 探究提示 1 垂直 2 由直线l得到其方向向量u 再定k 由直线l得到其法向量n 4 3 再确定k 自主解答 1 设m x y 是直线l上任一点 则 x 1 y 1 又n 故 4 3 x 1 y 1 0 即4x 3y 1 0 答案 4x 3y 1 0 2 方法一 直线l的斜率向量u 与直线l平行 设p是过a且与l平行的直线上的动点 p的坐标是 x y 则 x 1 y 2 所求直线与l平行 当且仅当u 转化为坐标表示 即为1 y 2 x 1 0 整理得4x 3y 10 0 这就是所求的过a且与l平行的直线方程 设q x y 为直线l上一动点 则 x 1 y 2 点q在过a且垂直于l的直线上 当且仅当u 0 转化为坐标表示 即为1 x 1 y 2 0 整理得3x 4y 5 0 这就是所求的过a且与l垂直的直线方程 方法二 因为向量 4 3 与直线l垂直 所以n 4 3 是l的法向量 设p x y 为直线l上一动点 则 x 1 y 2 点p在与l平行的直线上 当且仅当n 0 转化为坐标表示即为4 x 1 3 y 2 0 整理得4x 3y 10 0 这就是所求的过a且与l平行的直线方程 设q x y 为一动点 则 x 1 y 2 点q在与l垂直的直线上 当且仅当与n共线 即n 转化为坐标表示即为4 y 2 3 x 1 0 整理得 3x 4y 5 0 即为过a且与l垂直的直线方程 延伸探究 若把题 2 的直线换成4x 5y 1 0 其他条件不变 怎样求过点a且与直线l垂直的直线方程 解析 取直线l的法向量n 4 5 设点p x y 在所求直线上 且 x 1 y 2 由题意知与n平行 即4 y 2 5 x 1 0 所以5x 4y 3 0 方法技巧 1 直线的法向量n 2 利用方向向量及法向量求直线方程的关键及常用结论 1 关键是探寻所求直线的方向向量同已知直线方向向量或法向量的关系 2 常用结论如下 所求直线与已知直线平行 则和已知直线的方向向量平行 和已知直线的法向量垂直 所求直线与已知直线垂直 则和已知直线的方向向量垂直 和已知直线的法向量平行 变式训练 求通过点a 2 1 且平行于向量a 3 1 的直线方程 解题指南 在直线上任取一点p x y 则 x 2 y 1 由 a 利用向量平行的条件可写出方程 解析 设p x y 是所求直线上的任一点 x 2 y 1 因为 a 所以 x 2 1 3 y 1 0 即所求直线方程为x 3y 5 0 补偿训练 求证直线l1 y 3x 1与l2 互相垂直 证明 在y 3x 1中 分别令x1 0 x2 1 得y1 1 y2 2 则a 0 1 b 1 2 是直线l1上的两个点 类似地 可得l2上的两点c 0 2 d 3 1 所以 1 2 0 1 1 3 3 1 0 2 3 1 1 3 3 1 0 所以ab cd 故l1 l2 类型二向量在平面几何中的应用 典例2 1 2013 新课标全国卷 已知正方形abcd的边长为2 e为cd的中点 则 2 如图 平行四边形abcd中 点e f分别是ad dc边的中点 be bf分别与ac交于r t两点 你能发现ar rt tc之间的关系吗 解题探究 1 题 1 中能否用简易方法求2 向量与与分别有什么关系 探究提示 1 建立坐标系 用坐标法求2 向量与与分别共线 自主解答 1 以点 为原点 以的方向为x轴 y轴的正方向建立平面直角坐标系 则a e d b 所以 2 1 2 2 所以 2 答案 2 2 设则 a b 由与共线 因此 存在实数m 使得 m a b 又由与共线 因此 存在实数n 使得由得m a b a 整理得由于向量a b不共线 所以解得所以同理于是所以ar rt tc 方法技巧 1 用向量证明平面几何问题的两种基本思路 1 向量的线性运算法的四个步骤 选取基底 用基底表示相关向量 利用向量的线性运算或数量积找相应关系 把几何问题向量化 2 向量的坐标运算法的四个步骤 建立适当的平面直角坐标系 把相关向量坐标化 用向量的坐标运算找相应关系 把几何问题向量化 2 用向量解决平面几何问题的常用策略 1 证明线段相等 平行 常运用向量加法的三角形法则 平行四边形法则 有时也用到向量减法的定义 2 证明线段平行 三角形相似 判断两直线是否平行 常运用向量平行的条件 a b a b b 0 或者a b x1y2 x2y1 0 3 证明线段的垂直问题 如证明四边形是矩形 正方形 判断两直线是否垂直等 常运用向量垂直的条件 a b a b 0 或者a b x1x2 y1y2 0 4 求与夹角相关的问题 往往利用向量的夹角公式cos 如求三角形的面积用公式s absinc时 可能会利用夹角公式求出cosc 进而求出sinc 5 向量的坐标法 对于有些平面几何问题 如矩形 正方形 直角三角形等 可建立平面直角坐标系 把向量用坐标表示 通过代数运算解决几何问题 变式训练 求等腰直角三角形中两直角边上的中线所成的钝角的余弦值 解析 如图 分别以等腰直角三角形的两直角边为x轴 y轴建立直角坐标系 设a 2a 0 b 0 2a 则d a 0 c 0 a 从而可求 2a a a 2a 不妨设 的夹角为 则cos 故所求钝角的余弦值为 补偿训练 已知de是 abc的中位线 用向量的方法证明 de bc 且de bc 证明 易知所以即de bc 又d不在bc上 所以de bc 类型三向量在物理中的应用 典例3 1 2014 安庆高一检测 用两条成60 角的绳索拉船 每条绳的拉力是12n 则合力为 2 一只渔船在航行中遇险 发出求救警报 在遇险地西南方向10nmile处有一只货船收到警报立即侦察 发现遇险渔船沿南偏东75 以9nmile h的速度向前航行 货船以21nmile h的航速前往营救 并在最短时间内与渔船靠近 求货船的位移 其中cos21 47 解题探究 1 合力与每条绳的拉力有什么关系 2 货船的位移指什么 探究提示 1 合力为两个拉力的和 2 位移指货船与渔船相遇时所经过的路程和方向 自主解答 1 选d 设两拉力分别为f1和f2 则f1与f2的夹角为60 合力f合 则f合 f1 f2 所以 f合 2 如图 设渔船在a处遇险 货船在b处发现渔船遇险 两船在c处相遇 所经时间为t h 由已知 bac 45 75 120 因为所以即所以 21t 2 9t 2 2 9t 10 cos120 100 化简得36t2 9t 10 0 即 3t 2 12t 5 0 因为t 0 所以所以又所以即所以36 196 2 14 10 cos abc 100 由此解得cos abc 所以 abc 21 47 故货船的位移是北偏东66 47 距离为14nmile 方法技巧 向量解决物理问题的步骤 变式训练 某人骑车以每小时a千米的速度向东行驶 感到风从正北方向吹来 而当速度为每小时2a千米时 感到风从东北方向吹来 试求实际风速和方向 解析 设a表示此人以每小时a千米的速度向东行驶的向量 无风时此人感到风速为 a 设实际风速为v 那么此时人感到的风速为v a 设因为所以这就是感到由正北方向吹来的风速 因为所以 于是当此人的速度是原来的2倍时所感受到由东北方向吹来的风速就是由题意 pbo 45 pa bo ba ao 从而 pob为等腰直角三角形 所以po pb 即 v 所以实际风速是每小时千米的西北风 补偿训练 已知两个恒力f1 i 2j f2 4i 5j 作用于同一质点 此质点从a 20 15 移动到b 7 0 其中i j分别是x轴 y轴正方向上的单位向量 试求 1 f1 f2分别对质点所做的功 2 f1 f2的合力f对质点所做的功 解析 因为a 20 15 b 7 0 所以 7 20 0 15 13i 15j 因为i j分别是x轴 y轴正方向上的单位向量 所以i j 0 i2 1 j2 1 1 f1对质点所做的功w1 i 2j 13i 15j 13i2 41i j 30j2 13 30 43 f2对质点所做的功w2 4i 5j 13i 15j 52i2 5i j 75j2 52 75 23 2 因为f f1 f2 5i 3j 所以f对质点所做的功w 5i 3j 13i 15j 65i2 36i j 45j2 65 45 20 易错误区 应用向量解决平面几何问题中的误区 典例 2014 合肥高一检测 在 abc中 则 abc的形状一定是 a 等边三角形b 等腰三角形c 直角三角形d 等腰直角三角形 解析 选c 由得所以所以即 所以所以所以 a 90 所以 abc是直角三角形 常见误区 防范措施 1 正确将平面几何中的边角关系与向量的运算进行转化理解平面几何中垂直 平行 边长 夹角等几何关系与向量平行 垂直 模 夹角等概念与运算间的关系 能正确将几何关系与向量运算结果之间进行相互转化 如本例中 由向量关系推得 a 90 2 熟练掌握向量的有关概念与运算向量的有关概念与运算是将几何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论