




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.已知函数的图象如图所示(I)求的值;(II)若函数在处的切线方程为,求函数的解析式;(III)在(II)的条件下,函数与的图象有三个不同的交点,求的取值范围2.已知函数(I)求函数的单调区间;(II)函数的图象的在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围3.已知函数的图象经过坐标原点,且在处取得极大值(I)求实数的取值范围;(II)若方程恰好有两个不同的根,求的解析式;(III)对于(II)中的函数,对任意,求证:4.已知常数,为自然对数的底数,函数,(I)写出的单调递增区间,并证明;(II)讨论函数在区间上零点的个数5.已知函数(I)当时,求函数的最大值; (II)若函数没有零点,求实数的取值范围6.已知函数 (I)讨论函数的单调性; (II)证明:若7.设曲线:(),表示导函数(I)求函数的极值;(II)对于曲线上的不同两点,求证:存在唯一的,使直线的斜率等于8.定义,(I)令函数,写出函数的定义域;(II)令函数的图象为曲线C,若存在实数b使得曲线C在处有斜率为8的切线,求实数的取值范围;(III)当且时,求证9.(全国卷22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=xlnx,(i)求函数f(x)的最大值;(ii)设0ab,证明0g(a)+g(b)-2g()a;(3)记(n=1,2,),求数列bn的前n项和Sn。14. (2009福建卷理)(本小题满分14分)已知函数,且,求: (1) 试用含的代数式表示b,并求的单调区间; (2)令,设函数在处取得极值,记点M (,),N(,),P(), ,请仔细观察曲线在点P处的切线与线段MP的位置变化趋势,并解释以下问题:(I)若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;(II)若存在点Q(n ,f(n), x n m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)15.设二次函数,方程的两根和满足(I)求实数的取值范围;(II)试比较与的大小并说明理由 16. (2009宁夏海南卷理)(本小题满分12分)已知函数 (1)如,求的单调区间;(2)若在单调增加,在单调减少,证明6. 17.已知函数(1) 若函数图象上任意不同两点连线的斜率都小于1,则;(2) 若0,1,函数图象上任一点切线的斜率为,求时的取值范围。参考答案:1解:函数的导函数为 (2分)(I)由图可知 函数的图象过点(0,3),且得 (4分)(II)依题意 且 解得 所以 (8分)(III)可转化为:有三个不等实根,即:与轴有三个交点; ,+0-0+增极大值减极小值增 (10分)当且仅当时,有三个交点,故而,为所求 (12分)2解:(I)(2分)当当当a=1时,不是单调函数(5分) (II)(6分)(8分)(10分)(12分)3.解:(I)由,因为当时取得极大值,所以,所以;(4分)(II)由下表:+0-0-递增极大值递减极小值递增 依题意得:,解得:所以函数的解析式是: (10分)(III)对任意的实数都有在区间-2,2有:函数上的最大值与最小值的差等于81,所以(14分)4解:(I),得的单调递增区间是, (2分),即 (4分)(II),由,得,列表-0+单调递减极小值单调递增当时,函数取极小值,无极大值 (6分)由(I), (8分)(i)当,即时,函数在区间不存在零点(ii)当,即时 若,即时,函数在区间不存在零点 若,即时,函数在区间存在一个零点; 若,即时,函数在区间存在两个零点;综上所述,在上,我们有结论:当时,函数无零点;当 时,函数有一个零点;当时,函数有两个零点 (12分)5解:(I)当时,定义域为(1,+),令, (2分)当,当,内是增函数,上是减函数当时,取最大值 (4分)(II)当,函数图象与函数图象有公共点,函数有零点,不合要求; (8分)当, (6分)令,内是增函数,上是减函数,的最大值是, 函数没有零点,因此,若函数没有零点,则实数的取值范围(10分)6.(1)的定义域为, 2分(i)若,则 故在单调增加(ii)若 单调减少,在(0,a-1), 单调增加(iii)若 单调增加(II)考虑函数 由 由于,从而当时有 故,当时,有7.解:(I),得当变化时,与变化情况如下表:0单调递增极大值单调递减当时,取得极大值,没有极小值; (4分)(II)(方法1),即,设,是的增函数,;,是的增函数,函数在内有零点, (10分)又,函数在是增函数,函数在内有唯一零点,命题成立(12分)(方法2),即,且唯一设,则,再设,在是增函数,同理方程在有解 (10分)一次函数在是增函数方程在有唯一解,命题成立(12分)注:仅用函数单调性说明,没有去证明曲线不存在拐点,不给分8.解:(I),即 (2分)得函数的定义域是, (4分)(II)设曲线处有斜率为8的切线,又由题设存在实数b使得 有解, (6分)由得代入得, 有解, (8分)方法1:,因为,所以,当时,存在实数,使得曲线C在处有斜率为8的切线(10分)方法2:得, (10分)方法3:是的补集,即 (10分)(III)令又令 ,单调递减. (12)分单调递减, , (14分) 9.(I)解:函数f(x)的定义域是(-1,),,令,解得x=0,当-1x0时,,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:.由(I)的结论知,由题设0ab,得,因此,所以又 综上(II)证法二:,设,则,当0xa时,因此F(x)在(a,+)上为增函数从而,当x=a时,F(x)有极小值F(a)因为F(a)=0,ba,所以F(b)0,即设,则当x0时,因此G(x)在(0,+)上为减函数,因为G(a)=0,ba,所以G(b)0,t1,原不等式等价于令f(t)=t-1-lnt,当时,有,函数f(t)在递增f(t)f(1)即t-1g(1)=0综上得(2)由(1)令x=1,2,(n-1)并相加得即得12.分析(I)这一问主要考查了二次函数根的分布及线性规划作可行域的能力。大部分考生有思路并能够得分。由题意知方程有两个根则有故有 右图中阴影部分即是满足这些条件的点的区域。(II)这一问考生不易得分,有一定的区分度。主要原因是含字母较多,不易找到突破口。此题主要利用消元的手段,消去目标中的,(如果消会较繁琐)再利用的范围,并借助(I)中的约束条件得进而求解,有较强的技巧性。解析 由题意有又(消元)消去可得又,且 13.解析:(1),是方程f(x)=0的两个根,; (2),=,有基本不等式可知(当且仅当时取等号),同,样,(n=1,2,), (3),而,即,同理,又14.解法一:()依题意,得由.从而令 当a1时, 当x变化时,与的变化情况如下表:x+单调递增单调递减单调递增由此得,函数的单调增区间为和,单调减区间为。当时,此时有恒成立,且仅在处,故函数的单调增区间为R当时,同理可得,函数的单调增区间为和,单调减区间为 综上:当时,函数的单调增区间为和,单调减区间为;当时,函数的单调增区间为R;当时,函数的单调增区间为和,单调减区间为.()由得令得由(1)得增区间为和,单调减区间为,所以函数在处取得极值,故M()N()。观察的图象,有如下现象:当m从-1(不含-1)变化到3时,线段MP的斜率与曲线在点P处切线的斜率之差Kmp-的值由正连续变为负。线段MP与曲线是否有异于H,P的公共点与Kmp的m正负有着密切的关联;Kmp=0对应的位置可能是临界点,故推测:满足Kmp的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线在点处的切线斜率;线段MP的斜率Kmp当Kmp=0时,解得直线MP的方程为 令当时,在上只有一个零点,可判断函数在上单调递增,在上单调递减,又,所以在上没有零点,即线段MP与曲线没有异于M,P的公共点。当时,.所以存在使得即当MP与曲线有异于M,P的公共点 综上,t的最小值为2.(2)类似(1)于中的观察,可得m的取值范围为解法二:(1)同解法一.(2)由得,令,得由(1)得的单调增区间为和,单调减区间为,所以函数在处取得极值。故M().N() () 直线MP的方程为由得线段MP与曲线有异于M,P的公共点等价于上述方程在(1,m)上有根,即函数上有零点.因为函数为三次函数,所以至多有三个零点,两个极值点.又.因此, 在上有零点等价于在内恰有一个极大值点和一个极小值点,即内有两不相等的实数根.等价于 即又因为,所以m 的取值范围为(2,3)从而满足题设条件的r的最小值为2.15.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力解法1:()令,则由题意可得故所求实数的取值范围是(II),令当时,单调增加,当时,即解法2:(I)同解法1(II),由(I)知,又于是,即,故解法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 面案等级考试及答案
- 主体剪力墙模板施工方案
- 旅行社运营实务(第二版)习题及答案 项目四 习题
- 2025年国企会计考试题目及答案
- 慢性肾功能衰竭课件
- 慕课课件观看时长建议
- 弱电设备采购规范书六安
- 酒钢公司考试题及答案
- 竞聘店长考试题目及答案
- 软件技能考试模拟题及答案
- 2024年旧钻井杆销售合同范本
- 网络安全攻防演练报告
- 2023年《安徽大学学生手册》在线考试学习通超星期末考试答案章节答案2024年
- 安全评估合同
- 《全面质量管理》习题集(含答案)
- DB21T 3947-2024 普通公路装配式混凝土桥梁下部工程施工技术规范
- DL∕T 432-2018 电力用油中颗粒度测定方法
- 《水处理生物学》课件
- 极简化改造实施规范
- 人教版五年级下册数学选择题大全带答案解析
- 线性代数精第一章第一节课件
评论
0/150
提交评论